Source: lib/gl-matrix/dist/esm/quat.js

  1. import * as glMatrix from "./common.js";
  2. import * as mat3 from "./mat3.js";
  3. import * as vec3 from "./vec3.js";
  4. import * as vec4 from "./vec4.js";
  5. /**
  6. * Quaternion in the format XYZW
  7. * @module quat
  8. */
  9. /**
  10. * Creates a new identity quat
  11. *
  12. * @returns {quat} a new quaternion
  13. */
  14. export function create() {
  15. var out = new glMatrix.ARRAY_TYPE(4);
  16. if (glMatrix.ARRAY_TYPE != Float32Array) {
  17. out[0] = 0;
  18. out[1] = 0;
  19. out[2] = 0;
  20. }
  21. out[3] = 1;
  22. return out;
  23. }
  24. /**
  25. * Set a quat to the identity quaternion
  26. *
  27. * @param {quat} out the receiving quaternion
  28. * @returns {quat} out
  29. */
  30. export function identity(out) {
  31. out[0] = 0;
  32. out[1] = 0;
  33. out[2] = 0;
  34. out[3] = 1;
  35. return out;
  36. }
  37. /**
  38. * Sets a quat from the given angle and rotation axis,
  39. * then returns it.
  40. *
  41. * @param {quat} out the receiving quaternion
  42. * @param {ReadonlyVec3} axis the axis around which to rotate
  43. * @param {Number} rad the angle in radians
  44. * @returns {quat} out
  45. **/
  46. export function setAxisAngle(out, axis, rad) {
  47. rad = rad * 0.5;
  48. var s = Math.sin(rad);
  49. out[0] = s * axis[0];
  50. out[1] = s * axis[1];
  51. out[2] = s * axis[2];
  52. out[3] = Math.cos(rad);
  53. return out;
  54. }
  55. /**
  56. * Gets the rotation axis and angle for a given
  57. * quaternion. If a quaternion is created with
  58. * setAxisAngle, this method will return the same
  59. * values as providied in the original parameter list
  60. * OR functionally equivalent values.
  61. * Example: The quaternion formed by axis [0, 0, 1] and
  62. * angle -90 is the same as the quaternion formed by
  63. * [0, 0, 1] and 270. This method favors the latter.
  64. * @param {vec3} out_axis Vector receiving the axis of rotation
  65. * @param {ReadonlyQuat} q Quaternion to be decomposed
  66. * @return {Number} Angle, in radians, of the rotation
  67. */
  68. export function getAxisAngle(out_axis, q) {
  69. var rad = Math.acos(q[3]) * 2.0;
  70. var s = Math.sin(rad / 2.0);
  71. if (s > glMatrix.EPSILON) {
  72. out_axis[0] = q[0] / s;
  73. out_axis[1] = q[1] / s;
  74. out_axis[2] = q[2] / s;
  75. } else {
  76. // If s is zero, return any axis (no rotation - axis does not matter)
  77. out_axis[0] = 1;
  78. out_axis[1] = 0;
  79. out_axis[2] = 0;
  80. }
  81. return rad;
  82. }
  83. /**
  84. * Gets the angular distance between two unit quaternions
  85. *
  86. * @param {ReadonlyQuat} a Origin unit quaternion
  87. * @param {ReadonlyQuat} b Destination unit quaternion
  88. * @return {Number} Angle, in radians, between the two quaternions
  89. */
  90. export function getAngle(a, b) {
  91. var dotproduct = dot(a, b);
  92. return Math.acos(2 * dotproduct * dotproduct - 1);
  93. }
  94. /**
  95. * Multiplies two quat's
  96. *
  97. * @param {quat} out the receiving quaternion
  98. * @param {ReadonlyQuat} a the first operand
  99. * @param {ReadonlyQuat} b the second operand
  100. * @returns {quat} out
  101. */
  102. export function multiply(out, a, b) {
  103. var ax = a[0],
  104. ay = a[1],
  105. az = a[2],
  106. aw = a[3];
  107. var bx = b[0],
  108. by = b[1],
  109. bz = b[2],
  110. bw = b[3];
  111. out[0] = ax * bw + aw * bx + ay * bz - az * by;
  112. out[1] = ay * bw + aw * by + az * bx - ax * bz;
  113. out[2] = az * bw + aw * bz + ax * by - ay * bx;
  114. out[3] = aw * bw - ax * bx - ay * by - az * bz;
  115. return out;
  116. }
  117. /**
  118. * Rotates a quaternion by the given angle about the X axis
  119. *
  120. * @param {quat} out quat receiving operation result
  121. * @param {ReadonlyQuat} a quat to rotate
  122. * @param {number} rad angle (in radians) to rotate
  123. * @returns {quat} out
  124. */
  125. export function rotateX(out, a, rad) {
  126. rad *= 0.5;
  127. var ax = a[0],
  128. ay = a[1],
  129. az = a[2],
  130. aw = a[3];
  131. var bx = Math.sin(rad),
  132. bw = Math.cos(rad);
  133. out[0] = ax * bw + aw * bx;
  134. out[1] = ay * bw + az * bx;
  135. out[2] = az * bw - ay * bx;
  136. out[3] = aw * bw - ax * bx;
  137. return out;
  138. }
  139. /**
  140. * Rotates a quaternion by the given angle about the Y axis
  141. *
  142. * @param {quat} out quat receiving operation result
  143. * @param {ReadonlyQuat} a quat to rotate
  144. * @param {number} rad angle (in radians) to rotate
  145. * @returns {quat} out
  146. */
  147. export function rotateY(out, a, rad) {
  148. rad *= 0.5;
  149. var ax = a[0],
  150. ay = a[1],
  151. az = a[2],
  152. aw = a[3];
  153. var by = Math.sin(rad),
  154. bw = Math.cos(rad);
  155. out[0] = ax * bw - az * by;
  156. out[1] = ay * bw + aw * by;
  157. out[2] = az * bw + ax * by;
  158. out[3] = aw * bw - ay * by;
  159. return out;
  160. }
  161. /**
  162. * Rotates a quaternion by the given angle about the Z axis
  163. *
  164. * @param {quat} out quat receiving operation result
  165. * @param {ReadonlyQuat} a quat to rotate
  166. * @param {number} rad angle (in radians) to rotate
  167. * @returns {quat} out
  168. */
  169. export function rotateZ(out, a, rad) {
  170. rad *= 0.5;
  171. var ax = a[0],
  172. ay = a[1],
  173. az = a[2],
  174. aw = a[3];
  175. var bz = Math.sin(rad),
  176. bw = Math.cos(rad);
  177. out[0] = ax * bw + ay * bz;
  178. out[1] = ay * bw - ax * bz;
  179. out[2] = az * bw + aw * bz;
  180. out[3] = aw * bw - az * bz;
  181. return out;
  182. }
  183. /**
  184. * Calculates the W component of a quat from the X, Y, and Z components.
  185. * Assumes that quaternion is 1 unit in length.
  186. * Any existing W component will be ignored.
  187. *
  188. * @param {quat} out the receiving quaternion
  189. * @param {ReadonlyQuat} a quat to calculate W component of
  190. * @returns {quat} out
  191. */
  192. export function calculateW(out, a) {
  193. var x = a[0],
  194. y = a[1],
  195. z = a[2];
  196. out[0] = x;
  197. out[1] = y;
  198. out[2] = z;
  199. out[3] = Math.sqrt(Math.abs(1.0 - x * x - y * y - z * z));
  200. return out;
  201. }
  202. /**
  203. * Calculate the exponential of a unit quaternion.
  204. *
  205. * @param {quat} out the receiving quaternion
  206. * @param {ReadonlyQuat} a quat to calculate the exponential of
  207. * @returns {quat} out
  208. */
  209. export function exp(out, a) {
  210. var x = a[0],
  211. y = a[1],
  212. z = a[2],
  213. w = a[3];
  214. var r = Math.sqrt(x * x + y * y + z * z);
  215. var et = Math.exp(w);
  216. var s = r > 0 ? et * Math.sin(r) / r : 0;
  217. out[0] = x * s;
  218. out[1] = y * s;
  219. out[2] = z * s;
  220. out[3] = et * Math.cos(r);
  221. return out;
  222. }
  223. /**
  224. * Calculate the natural logarithm of a unit quaternion.
  225. *
  226. * @param {quat} out the receiving quaternion
  227. * @param {ReadonlyQuat} a quat to calculate the exponential of
  228. * @returns {quat} out
  229. */
  230. export function ln(out, a) {
  231. var x = a[0],
  232. y = a[1],
  233. z = a[2],
  234. w = a[3];
  235. var r = Math.sqrt(x * x + y * y + z * z);
  236. var t = r > 0 ? Math.atan2(r, w) / r : 0;
  237. out[0] = x * t;
  238. out[1] = y * t;
  239. out[2] = z * t;
  240. out[3] = 0.5 * Math.log(x * x + y * y + z * z + w * w);
  241. return out;
  242. }
  243. /**
  244. * Calculate the scalar power of a unit quaternion.
  245. *
  246. * @param {quat} out the receiving quaternion
  247. * @param {ReadonlyQuat} a quat to calculate the exponential of
  248. * @param {Number} b amount to scale the quaternion by
  249. * @returns {quat} out
  250. */
  251. export function pow(out, a, b) {
  252. ln(out, a);
  253. scale(out, out, b);
  254. exp(out, out);
  255. return out;
  256. }
  257. /**
  258. * Performs a spherical linear interpolation between two quat
  259. *
  260. * @param {quat} out the receiving quaternion
  261. * @param {ReadonlyQuat} a the first operand
  262. * @param {ReadonlyQuat} b the second operand
  263. * @param {Number} t interpolation amount, in the range [0-1], between the two inputs
  264. * @returns {quat} out
  265. */
  266. export function slerp(out, a, b, t) {
  267. // benchmarks:
  268. // http://jsperf.com/quaternion-slerp-implementations
  269. var ax = a[0],
  270. ay = a[1],
  271. az = a[2],
  272. aw = a[3];
  273. var bx = b[0],
  274. by = b[1],
  275. bz = b[2],
  276. bw = b[3];
  277. var omega, cosom, sinom, scale0, scale1; // calc cosine
  278. cosom = ax * bx + ay * by + az * bz + aw * bw; // adjust signs (if necessary)
  279. if (cosom < 0.0) {
  280. cosom = -cosom;
  281. bx = -bx;
  282. by = -by;
  283. bz = -bz;
  284. bw = -bw;
  285. } // calculate coefficients
  286. if (1.0 - cosom > glMatrix.EPSILON) {
  287. // standard case (slerp)
  288. omega = Math.acos(cosom);
  289. sinom = Math.sin(omega);
  290. scale0 = Math.sin((1.0 - t) * omega) / sinom;
  291. scale1 = Math.sin(t * omega) / sinom;
  292. } else {
  293. // "from" and "to" quaternions are very close
  294. // ... so we can do a linear interpolation
  295. scale0 = 1.0 - t;
  296. scale1 = t;
  297. } // calculate final values
  298. out[0] = scale0 * ax + scale1 * bx;
  299. out[1] = scale0 * ay + scale1 * by;
  300. out[2] = scale0 * az + scale1 * bz;
  301. out[3] = scale0 * aw + scale1 * bw;
  302. return out;
  303. }
  304. /**
  305. * Generates a random unit quaternion
  306. *
  307. * @param {quat} out the receiving quaternion
  308. * @returns {quat} out
  309. */
  310. export function random(out) {
  311. // Implementation of http://planning.cs.uiuc.edu/node198.html
  312. // TODO: Calling random 3 times is probably not the fastest solution
  313. var u1 = glMatrix.RANDOM();
  314. var u2 = glMatrix.RANDOM();
  315. var u3 = glMatrix.RANDOM();
  316. var sqrt1MinusU1 = Math.sqrt(1 - u1);
  317. var sqrtU1 = Math.sqrt(u1);
  318. out[0] = sqrt1MinusU1 * Math.sin(2.0 * Math.PI * u2);
  319. out[1] = sqrt1MinusU1 * Math.cos(2.0 * Math.PI * u2);
  320. out[2] = sqrtU1 * Math.sin(2.0 * Math.PI * u3);
  321. out[3] = sqrtU1 * Math.cos(2.0 * Math.PI * u3);
  322. return out;
  323. }
  324. /**
  325. * Calculates the inverse of a quat
  326. *
  327. * @param {quat} out the receiving quaternion
  328. * @param {ReadonlyQuat} a quat to calculate inverse of
  329. * @returns {quat} out
  330. */
  331. export function invert(out, a) {
  332. var a0 = a[0],
  333. a1 = a[1],
  334. a2 = a[2],
  335. a3 = a[3];
  336. var dot = a0 * a0 + a1 * a1 + a2 * a2 + a3 * a3;
  337. var invDot = dot ? 1.0 / dot : 0; // TODO: Would be faster to return [0,0,0,0] immediately if dot == 0
  338. out[0] = -a0 * invDot;
  339. out[1] = -a1 * invDot;
  340. out[2] = -a2 * invDot;
  341. out[3] = a3 * invDot;
  342. return out;
  343. }
  344. /**
  345. * Calculates the conjugate of a quat
  346. * If the quaternion is normalized, this function is faster than quat.inverse and produces the same result.
  347. *
  348. * @param {quat} out the receiving quaternion
  349. * @param {ReadonlyQuat} a quat to calculate conjugate of
  350. * @returns {quat} out
  351. */
  352. export function conjugate(out, a) {
  353. out[0] = -a[0];
  354. out[1] = -a[1];
  355. out[2] = -a[2];
  356. out[3] = a[3];
  357. return out;
  358. }
  359. /**
  360. * Creates a quaternion from the given 3x3 rotation matrix.
  361. *
  362. * NOTE: The resultant quaternion is not normalized, so you should be sure
  363. * to renormalize the quaternion yourself where necessary.
  364. *
  365. * @param {quat} out the receiving quaternion
  366. * @param {ReadonlyMat3} m rotation matrix
  367. * @returns {quat} out
  368. * @function
  369. */
  370. export function fromMat3(out, m) {
  371. // Algorithm in Ken Shoemake's article in 1987 SIGGRAPH course notes
  372. // article "Quaternion Calculus and Fast Animation".
  373. var fTrace = m[0] + m[4] + m[8];
  374. var fRoot;
  375. if (fTrace > 0.0) {
  376. // |w| > 1/2, may as well choose w > 1/2
  377. fRoot = Math.sqrt(fTrace + 1.0); // 2w
  378. out[3] = 0.5 * fRoot;
  379. fRoot = 0.5 / fRoot; // 1/(4w)
  380. out[0] = (m[5] - m[7]) * fRoot;
  381. out[1] = (m[6] - m[2]) * fRoot;
  382. out[2] = (m[1] - m[3]) * fRoot;
  383. } else {
  384. // |w| <= 1/2
  385. var i = 0;
  386. if (m[4] > m[0]) i = 1;
  387. if (m[8] > m[i * 3 + i]) i = 2;
  388. var j = (i + 1) % 3;
  389. var k = (i + 2) % 3;
  390. fRoot = Math.sqrt(m[i * 3 + i] - m[j * 3 + j] - m[k * 3 + k] + 1.0);
  391. out[i] = 0.5 * fRoot;
  392. fRoot = 0.5 / fRoot;
  393. out[3] = (m[j * 3 + k] - m[k * 3 + j]) * fRoot;
  394. out[j] = (m[j * 3 + i] + m[i * 3 + j]) * fRoot;
  395. out[k] = (m[k * 3 + i] + m[i * 3 + k]) * fRoot;
  396. }
  397. return out;
  398. }
  399. /**
  400. * Creates a quaternion from the given euler angle x, y, z using the provided intrinsic order for the conversion.
  401. *
  402. * @param {quat} out the receiving quaternion
  403. * @param {x} x Angle to rotate around X axis in degrees.
  404. * @param {y} y Angle to rotate around Y axis in degrees.
  405. * @param {z} z Angle to rotate around Z axis in degrees.
  406. * @param {'zyx'|'xyz'|'yxz'|'yzx'|'zxy'|'zyx'} order Intrinsic order for conversion, default is zyx.
  407. * @returns {quat} out
  408. * @function
  409. */
  410. export function fromEuler(out, x, y, z) {
  411. var order = arguments.length > 4 && arguments[4] !== undefined ? arguments[4] : glMatrix.ANGLE_ORDER;
  412. var halfToRad = Math.PI / 360;
  413. x *= halfToRad;
  414. z *= halfToRad;
  415. y *= halfToRad;
  416. var sx = Math.sin(x);
  417. var cx = Math.cos(x);
  418. var sy = Math.sin(y);
  419. var cy = Math.cos(y);
  420. var sz = Math.sin(z);
  421. var cz = Math.cos(z);
  422. switch (order) {
  423. case "xyz":
  424. out[0] = sx * cy * cz + cx * sy * sz;
  425. out[1] = cx * sy * cz - sx * cy * sz;
  426. out[2] = cx * cy * sz + sx * sy * cz;
  427. out[3] = cx * cy * cz - sx * sy * sz;
  428. break;
  429. case "xzy":
  430. out[0] = sx * cy * cz - cx * sy * sz;
  431. out[1] = cx * sy * cz - sx * cy * sz;
  432. out[2] = cx * cy * sz + sx * sy * cz;
  433. out[3] = cx * cy * cz + sx * sy * sz;
  434. break;
  435. case "yxz":
  436. out[0] = sx * cy * cz + cx * sy * sz;
  437. out[1] = cx * sy * cz - sx * cy * sz;
  438. out[2] = cx * cy * sz - sx * sy * cz;
  439. out[3] = cx * cy * cz + sx * sy * sz;
  440. break;
  441. case "yzx":
  442. out[0] = sx * cy * cz + cx * sy * sz;
  443. out[1] = cx * sy * cz + sx * cy * sz;
  444. out[2] = cx * cy * sz - sx * sy * cz;
  445. out[3] = cx * cy * cz - sx * sy * sz;
  446. break;
  447. case "zxy":
  448. out[0] = sx * cy * cz - cx * sy * sz;
  449. out[1] = cx * sy * cz + sx * cy * sz;
  450. out[2] = cx * cy * sz + sx * sy * cz;
  451. out[3] = cx * cy * cz - sx * sy * sz;
  452. break;
  453. case "zyx":
  454. out[0] = sx * cy * cz - cx * sy * sz;
  455. out[1] = cx * sy * cz + sx * cy * sz;
  456. out[2] = cx * cy * sz - sx * sy * cz;
  457. out[3] = cx * cy * cz + sx * sy * sz;
  458. break;
  459. default:
  460. throw new Error('Unknown angle order ' + order);
  461. }
  462. return out;
  463. }
  464. /**
  465. * Returns a string representation of a quaternion
  466. *
  467. * @param {ReadonlyQuat} a vector to represent as a string
  468. * @returns {String} string representation of the vector
  469. */
  470. export function str(a) {
  471. return "quat(" + a[0] + ", " + a[1] + ", " + a[2] + ", " + a[3] + ")";
  472. }
  473. /**
  474. * Creates a new quat initialized with values from an existing quaternion
  475. *
  476. * @param {ReadonlyQuat} a quaternion to clone
  477. * @returns {quat} a new quaternion
  478. * @function
  479. */
  480. export var clone = vec4.clone;
  481. /**
  482. * Creates a new quat initialized with the given values
  483. *
  484. * @param {Number} x X component
  485. * @param {Number} y Y component
  486. * @param {Number} z Z component
  487. * @param {Number} w W component
  488. * @returns {quat} a new quaternion
  489. * @function
  490. */
  491. export var fromValues = vec4.fromValues;
  492. /**
  493. * Copy the values from one quat to another
  494. *
  495. * @param {quat} out the receiving quaternion
  496. * @param {ReadonlyQuat} a the source quaternion
  497. * @returns {quat} out
  498. * @function
  499. */
  500. export var copy = vec4.copy;
  501. /**
  502. * Set the components of a quat to the given values
  503. *
  504. * @param {quat} out the receiving quaternion
  505. * @param {Number} x X component
  506. * @param {Number} y Y component
  507. * @param {Number} z Z component
  508. * @param {Number} w W component
  509. * @returns {quat} out
  510. * @function
  511. */
  512. export var set = vec4.set;
  513. /**
  514. * Adds two quat's
  515. *
  516. * @param {quat} out the receiving quaternion
  517. * @param {ReadonlyQuat} a the first operand
  518. * @param {ReadonlyQuat} b the second operand
  519. * @returns {quat} out
  520. * @function
  521. */
  522. export var add = vec4.add;
  523. /**
  524. * Alias for {@link quat.multiply}
  525. * @function
  526. */
  527. export var mul = multiply;
  528. /**
  529. * Scales a quat by a scalar number
  530. *
  531. * @param {quat} out the receiving vector
  532. * @param {ReadonlyQuat} a the vector to scale
  533. * @param {Number} b amount to scale the vector by
  534. * @returns {quat} out
  535. * @function
  536. */
  537. export var scale = vec4.scale;
  538. /**
  539. * Calculates the dot product of two quat's
  540. *
  541. * @param {ReadonlyQuat} a the first operand
  542. * @param {ReadonlyQuat} b the second operand
  543. * @returns {Number} dot product of a and b
  544. * @function
  545. */
  546. export var dot = vec4.dot;
  547. /**
  548. * Performs a linear interpolation between two quat's
  549. *
  550. * @param {quat} out the receiving quaternion
  551. * @param {ReadonlyQuat} a the first operand
  552. * @param {ReadonlyQuat} b the second operand
  553. * @param {Number} t interpolation amount, in the range [0-1], between the two inputs
  554. * @returns {quat} out
  555. * @function
  556. */
  557. export var lerp = vec4.lerp;
  558. /**
  559. * Calculates the length of a quat
  560. *
  561. * @param {ReadonlyQuat} a vector to calculate length of
  562. * @returns {Number} length of a
  563. */
  564. export var length = vec4.length;
  565. /**
  566. * Alias for {@link quat.length}
  567. * @function
  568. */
  569. export var len = length;
  570. /**
  571. * Calculates the squared length of a quat
  572. *
  573. * @param {ReadonlyQuat} a vector to calculate squared length of
  574. * @returns {Number} squared length of a
  575. * @function
  576. */
  577. export var squaredLength = vec4.squaredLength;
  578. /**
  579. * Alias for {@link quat.squaredLength}
  580. * @function
  581. */
  582. export var sqrLen = squaredLength;
  583. /**
  584. * Normalize a quat
  585. *
  586. * @param {quat} out the receiving quaternion
  587. * @param {ReadonlyQuat} a quaternion to normalize
  588. * @returns {quat} out
  589. * @function
  590. */
  591. export var normalize = vec4.normalize;
  592. /**
  593. * Returns whether or not the quaternions have exactly the same elements in the same position (when compared with ===)
  594. *
  595. * @param {ReadonlyQuat} a The first quaternion.
  596. * @param {ReadonlyQuat} b The second quaternion.
  597. * @returns {Boolean} True if the vectors are equal, false otherwise.
  598. */
  599. export var exactEquals = vec4.exactEquals;
  600. /**
  601. * Returns whether or not the quaternions point approximately to the same direction.
  602. *
  603. * Both quaternions are assumed to be unit length.
  604. *
  605. * @param {ReadonlyQuat} a The first unit quaternion.
  606. * @param {ReadonlyQuat} b The second unit quaternion.
  607. * @returns {Boolean} True if the quaternions are equal, false otherwise.
  608. */
  609. export function equals(a, b) {
  610. return Math.abs(vec4.dot(a, b)) >= 1 - glMatrix.EPSILON;
  611. }
  612. /**
  613. * Sets a quaternion to represent the shortest rotation from one
  614. * vector to another.
  615. *
  616. * Both vectors are assumed to be unit length.
  617. *
  618. * @param {quat} out the receiving quaternion.
  619. * @param {ReadonlyVec3} a the initial vector
  620. * @param {ReadonlyVec3} b the destination vector
  621. * @returns {quat} out
  622. */
  623. export var rotationTo = function () {
  624. var tmpvec3 = vec3.create();
  625. var xUnitVec3 = vec3.fromValues(1, 0, 0);
  626. var yUnitVec3 = vec3.fromValues(0, 1, 0);
  627. return function (out, a, b) {
  628. var dot = vec3.dot(a, b);
  629. if (dot < -0.999999) {
  630. vec3.cross(tmpvec3, xUnitVec3, a);
  631. if (vec3.len(tmpvec3) < 0.000001) vec3.cross(tmpvec3, yUnitVec3, a);
  632. vec3.normalize(tmpvec3, tmpvec3);
  633. setAxisAngle(out, tmpvec3, Math.PI);
  634. return out;
  635. } else if (dot > 0.999999) {
  636. out[0] = 0;
  637. out[1] = 0;
  638. out[2] = 0;
  639. out[3] = 1;
  640. return out;
  641. } else {
  642. vec3.cross(tmpvec3, a, b);
  643. out[0] = tmpvec3[0];
  644. out[1] = tmpvec3[1];
  645. out[2] = tmpvec3[2];
  646. out[3] = 1 + dot;
  647. return normalize(out, out);
  648. }
  649. };
  650. }();
  651. /**
  652. * Performs a spherical linear interpolation with two control points
  653. *
  654. * @param {quat} out the receiving quaternion
  655. * @param {ReadonlyQuat} a the first operand
  656. * @param {ReadonlyQuat} b the second operand
  657. * @param {ReadonlyQuat} c the third operand
  658. * @param {ReadonlyQuat} d the fourth operand
  659. * @param {Number} t interpolation amount, in the range [0-1], between the two inputs
  660. * @returns {quat} out
  661. */
  662. export var sqlerp = function () {
  663. var temp1 = create();
  664. var temp2 = create();
  665. return function (out, a, b, c, d, t) {
  666. slerp(temp1, a, d, t);
  667. slerp(temp2, b, c, t);
  668. slerp(out, temp1, temp2, 2 * t * (1 - t));
  669. return out;
  670. };
  671. }();
  672. /**
  673. * Sets the specified quaternion with values corresponding to the given
  674. * axes. Each axis is a vec3 and is expected to be unit length and
  675. * perpendicular to all other specified axes.
  676. *
  677. * @param {ReadonlyVec3} view the vector representing the viewing direction
  678. * @param {ReadonlyVec3} right the vector representing the local "right" direction
  679. * @param {ReadonlyVec3} up the vector representing the local "up" direction
  680. * @returns {quat} out
  681. */
  682. export var setAxes = function () {
  683. var matr = mat3.create();
  684. return function (out, view, right, up) {
  685. matr[0] = right[0];
  686. matr[3] = right[1];
  687. matr[6] = right[2];
  688. matr[1] = up[0];
  689. matr[4] = up[1];
  690. matr[7] = up[2];
  691. matr[2] = -view[0];
  692. matr[5] = -view[1];
  693. matr[8] = -view[2];
  694. return normalize(out, fromMat3(out, matr));
  695. };
  696. }();