/**
* @file
*
* Summary.
* <p>This is a class for handling 4x4 matrices.</p>
*
* It contains functions to create geometric transformations equivalent to OpenGL's:
* <ul>
* <li>{@link https://registry.khronos.org/OpenGL-Refpages/gl2.1/xhtml/glLoadIdentity.xml glLoadIdentity}</li>
* <li>{@link https://registry.khronos.org/OpenGL-Refpages/gl2.1/xhtml/glRotate.xml glRotate}</li>
* <li>{@link https://registry.khronos.org/OpenGL-Refpages/gl2.1/xhtml/glScale.xml glScale}</li>
* <li>{@link https://registry.khronos.org/OpenGL-Refpages/gl2.1/xhtml/glTranslate.xml glTranslate}</li>
* <li>{@link https://registry.khronos.org/OpenGL-Refpages/gl2.1/xhtml/gluLookAt.xml gluLookAt}</li>
* <li>{@link https://registry.khronos.org/OpenGL-Refpages/gl2.1/xhtml/gluPerspective.xml gluPerspective}</li>
* <li>{@link https://registry.khronos.org/OpenGL-Refpages/gl2.1/xhtml/glOrtho.xml glOrtho}</li>
* <li>{@link https://registry.khronos.org/OpenGL-Refpages/gl2.1/xhtml/glFrustum.xml glFrustum}</li>
* </ul>
*
* This matrix is then right multiplied by one of those transformations.<br>
*
* @author Kanda and Matsuda
* @copyright © 2012 Kanda and Matsuda
* @since 28/09/2015
* @see <a href="/cwdc/13-webgl/lib/teal_book/cuon-matrix.js">source</a>
*/
/**
* <p>Constructor of Matrix4.</p>
* If opt_src is specified, new matrix is initialized by opt_src.<br>
* Otherwise, new matrix is initialized by identity matrix.
* @constructs Matrix4
* @param {Array<Number>} opt_src source matrix (optional).
*/
var Matrix4 = function (opt_src) {
var i, s, d;
if (
opt_src &&
typeof opt_src === "object" &&
opt_src.hasOwnProperty("elements")
) {
s = opt_src.elements;
d = new Float32Array(16);
for (i = 0; i < 16; ++i) {
d[i] = s[i];
}
/**
* Matrix container.
* @type {Float32Array}
*/
this.elements = d;
} else {
this.elements = new Float32Array([
1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1,
]);
}
};
/**
* Set the identity matrix.
* @return {Matrix4} this matrix.
*/
// prettier-ignore
Matrix4.prototype.setIdentity = function () {
var e = this.elements;
e[0] = 1; e[4] = 0; e[8] = 0; e[12] = 0;
e[1] = 0; e[5] = 1; e[9] = 0; e[13] = 0;
e[2] = 0; e[6] = 0; e[10] = 1; e[14] = 0;
e[3] = 0; e[7] = 0; e[11] = 0; e[15] = 1;
return this;
};
/**
* Copy src to this matrix.
* @param {Matrix4} src source matrix
* @return {Matrix4} this matrix.
*/
Matrix4.prototype.set = function (src) {
var i, s, d;
s = src.elements;
d = this.elements;
if (s === d) {
return;
}
for (i = 0; i < 16; ++i) {
d[i] = s[i];
}
return this;
};
/**
* Right multiply this matrix by other.
* @param {Matrix4} other a matrix.
* @return {Matrix4} this matrix.
*/
Matrix4.prototype.concat = function (other) {
var i, e, a, b, ai0, ai1, ai2, ai3;
// Calculate e = a * b
e = this.elements;
a = this.elements;
b = other.elements;
// If e equals b, copy b to temporary matrix.
if (e === b) {
b = new Float32Array(16);
for (i = 0; i < 16; ++i) {
b[i] = e[i];
}
}
for (i = 0; i < 4; i++) {
ai0 = a[i];
ai1 = a[i + 4];
ai2 = a[i + 8];
ai3 = a[i + 12];
e[i] = ai0 * b[0] + ai1 * b[1] + ai2 * b[2] + ai3 * b[3];
e[i + 4] = ai0 * b[4] + ai1 * b[5] + ai2 * b[6] + ai3 * b[7];
e[i + 8] = ai0 * b[8] + ai1 * b[9] + ai2 * b[10] + ai3 * b[11];
e[i + 12] = ai0 * b[12] + ai1 * b[13] + ai2 * b[14] + ai3 * b[15];
}
return this;
};
/**
* Right multiply this matrix by other.
* @param {Matrix4} other a matrix.
* @return {Matrix4} this matrix.
* @function
*/
Matrix4.prototype.multiply = Matrix4.prototype.concat;
/**
* Multiply this 3D vector by pos.
* @param {Vector3} pos a 3D vector.
* @return {Float32Array} result of multiplication.
*/
Matrix4.prototype.multiplyVector3 = function (pos) {
var e = this.elements;
var p = pos.elements;
var v = new Vector3();
var result = v.elements;
result[0] = p[0] * e[0] + p[1] * e[4] + p[2] * e[8] + e[11];
result[1] = p[0] * e[1] + p[1] * e[5] + p[2] * e[9] + e[12];
result[2] = p[0] * e[2] + p[1] * e[6] + p[2] * e[10] + e[13];
return v;
};
/**
* Multiply this 4D vector by pos.
* @param {Vector4} pos a 4D vector.
* @return {Float32Array} result of multiplication.
*/
Matrix4.prototype.multiplyVector4 = function (pos) {
var e = this.elements;
var p = pos.elements;
var v = new Vector4();
var result = v.elements;
result[0] = p[0] * e[0] + p[1] * e[4] + p[2] * e[8] + p[3] * e[12];
result[1] = p[0] * e[1] + p[1] * e[5] + p[2] * e[9] + p[3] * e[13];
result[2] = p[0] * e[2] + p[1] * e[6] + p[2] * e[10] + p[3] * e[14];
result[3] = p[0] * e[3] + p[1] * e[7] + p[2] * e[11] + p[3] * e[15];
return v;
};
/**
* Transpose this matrix.
* @return {Matrix4} this matrix.
*/
// prettier-ignore
Matrix4.prototype.transpose = function () {
var e, t;
e = this.elements;
t = e[1]; e[1] = e[4]; e[4] = t;
t = e[2]; e[2] = e[8]; e[8] = t;
t = e[3]; e[3] = e[12]; e[12] = t;
t = e[6]; e[6] = e[9]; e[9] = t;
t = e[7]; e[7] = e[13]; e[13] = t;
t = e[11]; e[11] = e[14]; e[14] = t;
return this;
};
/**
* Set this matrix to the inverse of other.
* @param {Matrix4} other source matrix.
* @return {Matrix4} this matrix.
*/
// prettier-ignore
Matrix4.prototype.setInverseOf = function (other) {
var i, s, d, inv, det;
s = other.elements;
d = this.elements;
inv = new Float32Array(16);
inv[0] = s[5] * s[10] * s[15] - s[5] * s[11] * s[14] - s[9] * s[6] * s[15]
+ s[9] * s[7] * s[14] + s[13] * s[6] * s[11] - s[13] * s[7] * s[10];
inv[4] = - s[4] * s[10] * s[15] + s[4] * s[11] * s[14] + s[8] * s[6] * s[15]
- s[8] * s[7] * s[14] - s[12] * s[6] * s[11] + s[12] * s[7] * s[10];
inv[8] = s[4] * s[9] * s[15] - s[4] * s[11] * s[13] - s[8] * s[5] * s[15]
+ s[8] * s[7] * s[13] + s[12] * s[5] * s[11] - s[12] * s[7] * s[9];
inv[12] = - s[4] * s[9] * s[14] + s[4] * s[10] * s[13] + s[8] * s[5] * s[14]
- s[8] * s[6] * s[13] - s[12] * s[5] * s[10] + s[12] * s[6] * s[9];
inv[1] = - s[1] * s[10] * s[15] + s[1] * s[11] * s[14] + s[9] * s[2] * s[15]
- s[9] * s[3] * s[14] - s[13] * s[2] * s[11] + s[13] * s[3] * s[10];
inv[5] = s[0] * s[10] * s[15] - s[0] * s[11] * s[14] - s[8] * s[2] * s[15]
+ s[8] * s[3] * s[14] + s[12] * s[2] * s[11] - s[12] * s[3] * s[10];
inv[9] = - s[0] * s[9] * s[15] + s[0] * s[11] * s[13] + s[8] * s[1] * s[15]
- s[8] * s[3] * s[13] - s[12] * s[1] * s[11] + s[12] * s[3] * s[9];
inv[13] = s[0] * s[9] * s[14] - s[0] * s[10] * s[13] - s[8] * s[1] * s[14]
+ s[8] * s[2] * s[13] + s[12] * s[1] * s[10] - s[12] * s[2] * s[9];
inv[2] = s[1] * s[6] * s[15] - s[1] * s[7] * s[14] - s[5] * s[2] * s[15]
+ s[5] * s[3] * s[14] + s[13] * s[2] * s[7] - s[13] * s[3] * s[6];
inv[6] = - s[0] * s[6] * s[15] + s[0] * s[7] * s[14] + s[4] * s[2] * s[15]
- s[4] * s[3] * s[14] - s[12] * s[2] * s[7] + s[12] * s[3] * s[6];
inv[10] = s[0] * s[5] * s[15] - s[0] * s[7] * s[13] - s[4] * s[1] * s[15]
+ s[4] * s[3] * s[13] + s[12] * s[1] * s[7] - s[12] * s[3] * s[5];
inv[14] = - s[0] * s[5] * s[14] + s[0] * s[6] * s[13] + s[4] * s[1] * s[14]
- s[4] * s[2] * s[13] - s[12] * s[1] * s[6] + s[12] * s[2] * s[5];
inv[3] = - s[1] * s[6] * s[11] + s[1] * s[7] * s[10] + s[5] * s[2] * s[11]
- s[5] * s[3] * s[10] - s[9] * s[2] * s[7] + s[9] * s[3] * s[6];
inv[7] = s[0] * s[6] * s[11] - s[0] * s[7] * s[10] - s[4] * s[2] * s[11]
+ s[4] * s[3] * s[10] + s[8] * s[2] * s[7] - s[8] * s[3] * s[6];
inv[11] = - s[0] * s[5] * s[11] + s[0] * s[7] * s[9] + s[4] * s[1] * s[11]
- s[4] * s[3] * s[9] - s[8] * s[1] * s[7] + s[8] * s[3] * s[5];
inv[15] = s[0] * s[5] * s[10] - s[0] * s[6] * s[9] - s[4] * s[1] * s[10]
+ s[4] * s[2] * s[9] + s[8] * s[1] * s[6] - s[8] * s[2] * s[5];
det = s[0] * inv[0] + s[1] * inv[4] + s[2] * inv[8] + s[3] * inv[12];
if (det === 0) {
return this;
}
det = 1 / det;
for (i = 0; i < 16; i++) {
d[i] = inv[i] * det;
}
return this;
};
/**
* Invert this matrix.
* @return {Matrix4} this matrix.
*/
Matrix4.prototype.invert = function () {
return this.setInverseOf(this);
};
/**
* Set the orthographic projection matrix.
* @param {Number} left coordinate of the left clipping plane.
* @param {Number} right coordinate of the right clipping plane.
* @param {Number} bottom coordinate of the bottom clipping plane.
* @param {Number} top coordinate of the top clipping plane.
* @param {Number} near distance to the near clipping plane.<br>
* This value is negative if the plane is behind the viewer.
* @param {Number}far distance to the far clipping plane.<br>
* This value is negtive if the plane is behind the viewer.
* @return {Matrix4} this matrix.
*/
Matrix4.prototype.setOrtho = function (left, right, bottom, top, near, far) {
var e, rw, rh, rd;
if (left === right || bottom === top || near === far) {
throw "null frustum";
}
rw = 1 / (right - left);
rh = 1 / (top - bottom);
rd = 1 / (far - near);
e = this.elements;
e[0] = 2 * rw;
e[1] = 0;
e[2] = 0;
e[3] = 0;
e[4] = 0;
e[5] = 2 * rh;
e[6] = 0;
e[7] = 0;
e[8] = 0;
e[9] = 0;
e[10] = -2 * rd;
e[11] = 0;
e[12] = -(right + left) * rw;
e[13] = -(top + bottom) * rh;
e[14] = -(far + near) * rd;
e[15] = 1;
return this;
};
/**
* Right multiply this matrix by an orthographic projection matrix.
* @param {Number} left coordinate of the left clipping plane.
* @param {Number} right coordinate of the right clipping plane.
* @param {Number} bottom coordinate of the bottom clipping plane.
* @param {Number} top coordinate of the top clipping plane.
* @param {Number} near distance to the near clipping plane.<br>
* This value is negative if the plane is behind the viewer.
* @param {Number} far distance to the far clipping plane.<br>
* This value is negative if the plane is behind the viewer.
* @return {Matrix4} this matrix.
*/
Matrix4.prototype.ortho = function (left, right, bottom, top, near, far) {
return this.concat(
new Matrix4().setOrtho(left, right, bottom, top, near, far),
);
};
/**
* Set the perspective projection matrix.
* @param {Number} left coordinate of the left clipping plane.
* @param {Number} right coordinate of the right clipping plane.
* @param {Number} bottom coordinate of the bottom clipping plane.
* @param {Number} top coordinate of the top clipping plane.
* @param {Number} near distance to the near clipping plane. <br>
* This value must be positive.
* @param {Number} far distance to the far clipping plane. <br>
* This value must be positive.
* @return {Matrix4} this matrix.
*/
Matrix4.prototype.setFrustum = function (left, right, bottom, top, near, far) {
var e, rw, rh, rd;
if (left === right || top === bottom || near === far) {
throw "null frustum";
}
if (near <= 0) {
throw "near <= 0";
}
if (far <= 0) {
throw "far <= 0";
}
rw = 1 / (right - left);
rh = 1 / (top - bottom);
rd = 1 / (far - near);
e = this.elements;
e[0] = 2 * near * rw;
e[1] = 0;
e[2] = 0;
e[3] = 0;
e[4] = 0;
e[5] = 2 * near * rh;
e[6] = 0;
e[7] = 0;
e[8] = (right + left) * rw;
e[9] = (top + bottom) * rh;
e[10] = -(far + near) * rd;
e[11] = -1;
e[12] = 0;
e[13] = 0;
e[14] = -2 * near * far * rd;
e[15] = 0;
return this;
};
/**
* Right multiply this matrix by a perspective projection matrix.
* @param {Number} left coordinate of the left clipping plane.
* @param {Number} right coordinate of the right clipping plane.
* @param {Number} bottom coordinate of the bottom clipping plane.
* @param {Number} top coordinate of the top clipping plane.
* @param {Number} near distance to the near clipping plane. <br>
* This value must be positive.
* @param {Number} far distance to the far clipping plane. <br>
* This value must be positive.
* @return {Matrix4} this matrix.
*/
Matrix4.prototype.frustum = function (left, right, bottom, top, near, far) {
return this.concat(
new Matrix4().setFrustum(left, right, bottom, top, near, far),
);
};
/**
* Set the perspective projection matrix.
* @param {Number} fovy field of view angle between the upper and lower sides of the view frustum.
* @param {Number} aspect aspect ratio of the view frustum (width/height).
* @param {Number} near distance to the near clipping plane. <br>
* This value must be positive.
* @param {Number} far distance to the far clipping plane. <br>
* This value must be positive.
* @return {Matrix4} this matrix.
*/
Matrix4.prototype.setPerspective = function (fovy, aspect, near, far) {
var e, rd, s, ct;
if (near === far || aspect === 0) {
throw "null frustum";
}
if (near <= 0) {
throw "near <= 0";
}
if (far <= 0) {
throw "far <= 0";
}
fovy = (Math.PI * fovy) / 180 / 2;
s = Math.sin(fovy);
if (s === 0) {
throw "null frustum";
}
rd = 1 / (far - near);
ct = Math.cos(fovy) / s;
e = this.elements;
e[0] = ct / aspect;
e[1] = 0;
e[2] = 0;
e[3] = 0;
e[4] = 0;
e[5] = ct;
e[6] = 0;
e[7] = 0;
e[8] = 0;
e[9] = 0;
e[10] = -(far + near) * rd;
e[11] = -1;
e[12] = 0;
e[13] = 0;
e[14] = -2 * near * far * rd;
e[15] = 0;
return this;
};
/**
* Right multiply this matrix by a perspective projection matrix.
* @param {Number} fovy field of view angle between the upper and lower sides of the view frustum.
* @param {Number} aspect aspect ratio of the view frustum (width/height).
* @param {Number} near distance to the near clipping plane. <br>
* This value must be positive.
* @param {Number} far distance to the far clipping plane. <br>
* This value must be positive.
* @return {Matrix4} this matrix.
*/
Matrix4.prototype.perspective = function (fovy, aspect, near, far) {
return this.concat(new Matrix4().setPerspective(fovy, aspect, near, far));
};
/**
* Set the matrix for scaling.
* @param {Number} x scale factor along the X axis.
* @param {Number} y scale factor along the Y axis.
* @param {Number} z scale factor along the Z axis.
* @return {Matrix4} this matrix.
*/
// prettier-ignore
Matrix4.prototype.setScale = function (x, y, z) {
var e = this.elements;
e[0] = x; e[4] = 0; e[8] = 0; e[12] = 0;
e[1] = 0; e[5] = y; e[9] = 0; e[13] = 0;
e[2] = 0; e[6] = 0; e[10] = z; e[14] = 0;
e[3] = 0; e[7] = 0; e[11] = 0; e[15] = 1;
return this;
};
/**
* Right multiply this matrix by a scale matrix.
* @param {Number} x scale factor along the X axis.
* @param {Number} y scale factor along the Y axis.
* @param {Number} z scale factor along the Z axis.
* @return {Matrix4} this matrix.
*/
// prettier-ignore
Matrix4.prototype.scale = function (x, y, z) {
var e = this.elements;
e[0] *= x; e[4] *= y; e[8] *= z;
e[1] *= x; e[5] *= y; e[9] *= z;
e[2] *= x; e[6] *= y; e[10] *= z;
e[3] *= x; e[7] *= y; e[11] *= z;
return this;
};
/**
* Set the matrix for translation.
* @param {Number} x translation in the X direction.
* @param {Number} y translation in the Y direction.
* @param {Number} z translation in the Z direction.
* @return {Matrix4} this matrix.
*/
// prettier-ignore
Matrix4.prototype.setTranslate = function (x, y, z) {
var e = this.elements;
e[0] = 1; e[4] = 0; e[8] = 0; e[12] = x;
e[1] = 0; e[5] = 1; e[9] = 0; e[13] = y;
e[2] = 0; e[6] = 0; e[10] = 1; e[14] = z;
e[3] = 0; e[7] = 0; e[11] = 0; e[15] = 1;
return this;
};
/**
* Right multiply this matrix by a translation matrix.
* @param {Number} x translation in the X direction.
* @param {Number} y translation in the Y direction.
* @param {Number} z translation in the Z direction.
* @return {Matrix4} this matrix.
*/
Matrix4.prototype.translate = function (x, y, z) {
var e = this.elements;
e[12] += e[0] * x + e[4] * y + e[8] * z;
e[13] += e[1] * x + e[5] * y + e[9] * z;
e[14] += e[2] * x + e[6] * y + e[10] * z;
e[15] += e[3] * x + e[7] * y + e[11] * z;
return this;
};
/**
* <p>Set the matrix for rotation.</p>
* The rotation axis vector may not be normalized.
* @param {Number} angle angle of rotation (degrees).
* @param {Number} x X coordinate of rotation axis vector.
* @param {Number} y Y coordinate of rotation axis vector.
* @param {Number} z Z coordinate of rotation axis vector.
* @return {Matrix4} this matrix.
*/
// prettier-ignore
Matrix4.prototype.setRotate = function (angle, x, y, z) {
var e, s, c, len, rlen, nc, xy, yz, zx, xs, ys, zs;
angle = (Math.PI * angle) / 180;
e = this.elements;
s = Math.sin(angle);
c = Math.cos(angle);
if (0 !== x && 0 === y && 0 === z) {
// Rotation around X axis
if (x < 0) {
s = -s;
}
e[0] = 1; e[4] = 0; e[8] = 0; e[12] = 0;
e[1] = 0; e[5] = c; e[9] = -s; e[13] = 0;
e[2] = 0; e[6] = s; e[10] = c; e[14] = 0;
e[3] = 0; e[7] = 0; e[11] = 0; e[15] = 1;
} else if (0 === x && 0 !== y && 0 === z) {
// Rotation around Y axis
if (y < 0) {
s = -s;
}
e[0] = c; e[4] = 0; e[8] = s; e[12] = 0;
e[1] = 0; e[5] = 1; e[9] = 0; e[13] = 0;
e[2] = -s; e[6] = 0; e[10] = c; e[14] = 0;
e[3] = 0; e[7] = 0; e[11] = 0; e[15] = 1;
} else if (0 === x && 0 === y && 0 !== z) {
// Rotation around Z axis
if (z < 0) {
s = -s;
}
e[0] = c; e[4] = -s; e[8] = 0; e[12] = 0;
e[1] = s; e[5] = c; e[9] = 0; e[13] = 0;
e[2] = 0; e[6] = 0; e[10] = 1; e[14] = 0;
e[3] = 0; e[7] = 0; e[11] = 0; e[15] = 1;
} else {
// Rotation around another axis
len = Math.sqrt(x * x + y * y + z * z);
if (len !== 1) {
rlen = 1 / len;
x *= rlen;
y *= rlen;
z *= rlen;
}
nc = 1 - c;
xy = x * y;
yz = y * z;
zx = z * x;
xs = x * s;
ys = y * s;
zs = z * s;
e[0] = x * x * nc + c;
e[1] = xy * nc + zs;
e[2] = zx * nc - ys;
e[3] = 0;
e[4] = xy * nc - zs;
e[5] = y * y * nc + c;
e[6] = yz * nc + xs;
e[7] = 0;
e[8] = zx * nc + ys;
e[9] = yz * nc - xs;
e[10] = z * z * nc + c;
e[11] = 0;
e[12] = 0;
e[13] = 0;
e[14] = 0;
e[15] = 1;
}
return this;
};
/**
* <p>Right multiply this matrix by a rotation matrix.</p>
* The rotation axis vector may not be normalized.
* @param {Number} angle angle of rotation (degrees)
* @param {Number} x X coordinate of rotation axis vector.
* @param {Number} y Y coordinate of rotation axis vector.
* @param {Number} z Z coordinate of rotation axis vector.
* @return {Matrix4} this matrix.
*/
Matrix4.prototype.rotate = function (angle, x, y, z) {
return this.concat(new Matrix4().setRotate(angle, x, y, z));
};
/**
* Set the viewing matrix.
* @param {Number} eyeX X coordinate of the eye position.
* @param {Number} eyeY Y coordinate of the eye position.
* @param {Number} eyeZ Z coordinate of the eye position.
* @param {Number} centerX X coordinate of the reference point.
* @param {Number} centerY Y coordinate of the reference point.
* @param {Number} centerZ Z coordinate of the reference point.
* @param {Number} upX X coordinate of the view up vector.
* @param {Number} upY Y coordinate of the view up vector.
* @param {Number} upZ Z coordinate of the view up vector.
* @return {Matrix4} this matrix.
*/
Matrix4.prototype.setLookAt = function (
eyeX,
eyeY,
eyeZ,
centerX,
centerY,
centerZ,
upX,
upY,
upZ,
) {
var e, fx, fy, fz, rlf, sx, sy, sz, rls, ux, uy, uz;
fx = centerX - eyeX;
fy = centerY - eyeY;
fz = centerZ - eyeZ;
// Normalize f.
rlf = 1 / Math.sqrt(fx * fx + fy * fy + fz * fz);
fx *= rlf;
fy *= rlf;
fz *= rlf;
// Calculate cross product of f and up.
sx = fy * upZ - fz * upY;
sy = fz * upX - fx * upZ;
sz = fx * upY - fy * upX;
// Normalize s.
rls = 1 / Math.sqrt(sx * sx + sy * sy + sz * sz);
sx *= rls;
sy *= rls;
sz *= rls;
// Calculate cross product of s and f.
ux = sy * fz - sz * fy;
uy = sz * fx - sx * fz;
uz = sx * fy - sy * fx;
// Set to this.
e = this.elements;
e[0] = sx;
e[1] = ux;
e[2] = -fx;
e[3] = 0;
e[4] = sy;
e[5] = uy;
e[6] = -fy;
e[7] = 0;
e[8] = sz;
e[9] = uz;
e[10] = -fz;
e[11] = 0;
e[12] = 0;
e[13] = 0;
e[14] = 0;
e[15] = 1;
// Translate.
return this.translate(-eyeX, -eyeY, -eyeZ);
};
/**
* Right multiply this matrix by the viewing matrix.
* @param {Number} eyeX X coordinate of the eye position.
* @param {Number} eyeY Y coordinate of the eye position.
* @param {Number} eyeZ Z coordinate of the eye position.
* @param {Number} centerX X coordinate of the reference point.
* @param {Number} centerY Y coordinate of the reference point.
* @param {Number} centerZ Z coordinate of the reference point.
* @param {Number} upX X coordinate of the view up vector.
* @param {Number} upY Y coordinate of the view up vector.
* @param {Number} upZ Z coordinate of the view up vector.
* @return {Matrix4} this matrix.
*/
Matrix4.prototype.lookAt = function (
eyeX,
eyeY,
eyeZ,
centerX,
centerY,
centerZ,
upX,
upY,
upZ,
) {
return this.concat(
new Matrix4().setLookAt(
eyeX,
eyeY,
eyeZ,
centerX,
centerY,
centerZ,
upX,
upY,
upZ,
),
);
};
/**
* Right multiply this matrix by a matrix for projecting a vertex onto a plane.
* @param {Array<Number>} plane coefficients [A, B, C, D] of the plane equation: "Ax + By + Cz + D = 0".
* @param {Array<Number>} light array holding the coordinates of the light source. <br>
* If light[3] == 0, consider light source at infinity (parallel rays).
* @return {Matrix4} this matrix.
*/
Matrix4.prototype.dropShadow = function (plane, light) {
var mat = new Matrix4();
var e = mat.elements;
var dot =
plane[0] * light[0] +
plane[1] * light[1] +
plane[2] * light[2] +
plane[3] * light[3];
e[0] = dot - light[0] * plane[0];
e[1] = -light[1] * plane[0];
e[2] = -light[2] * plane[0];
e[3] = -light[3] * plane[0];
e[4] = -light[0] * plane[1];
e[5] = dot - light[1] * plane[1];
e[6] = -light[2] * plane[1];
e[7] = -light[3] * plane[1];
e[8] = -light[0] * plane[2];
e[9] = -light[1] * plane[2];
e[10] = dot - light[2] * plane[2];
e[11] = -light[3] * plane[2];
e[12] = -light[0] * plane[3];
e[13] = -light[1] * plane[3];
e[14] = -light[2] * plane[3];
e[15] = dot - light[3] * plane[3];
return this.concat(mat);
};
/**
* <p>Right multiply this matrix by the matrix for projecting a vertex onto a plane.</p>
* (Projected by parallel light.)
* @param {Number} normX X coordinate of the normal vector of the plane.
* @param {Number} normY Y coordinate of the normal vector of the plane.
* @param {Number} normZ Z coordinate of the normal vector of the plane. <br>
* (Not necessary to be normalized.)
* @param {Number} planeX X coordinate of an arbitrary point on the plane.
* @param {Number} planeY Y coordinate of an arbitrary point on the plane.
* @param {Number} planeZ Z coordinate of an arbitrary point on the plane.
* @param {Number} lightX X coordinate of the light direction.
* @param {Number} lightY Y coordinate of the light direction.
* @param {Number} lightZ Z coordinate of the light direction. <br>
* (Not necessary to be normalized.)
* @return {Matrix4} this matrix.
*/
Matrix4.prototype.dropShadowDirectionally = function (
normX,
normY,
normZ,
planeX,
planeY,
planeZ,
lightX,
lightY,
lightZ,
) {
var a = planeX * normX + planeY * normY + planeZ * normZ;
return this.dropShadow(
[normX, normY, normZ, -a],
[lightX, lightY, lightZ, 0],
);
};
/**
* <p>Constructor of Vector3.</p>
* If opt_src is specified, the new vector is initialized by opt_src.
* @constructs Vector3
* @param {Array<Number>} opt_src source vector (optional).
*/
var Vector3 = function (opt_src) {
var v = new Float32Array(3);
if (opt_src && typeof opt_src === "object") {
v[0] = opt_src[0];
v[1] = opt_src[1];
v[2] = opt_src[2];
}
/**
* Vector container.
* @type {Float32Array}
*/
this.elements = v;
};
/**
* Normalize this vector.
* @return {Vector3} this
*/
Vector3.prototype.normalize = function () {
var v = this.elements;
var c = v[0],
d = v[1],
e = v[2],
g = Math.sqrt(c * c + d * d + e * e);
if (g) {
if (g == 1) return this;
} else {
v[0] = 0;
v[1] = 0;
v[2] = 0;
return this;
}
g = 1 / g;
v[0] = c * g;
v[1] = d * g;
v[2] = e * g;
return this;
};
/**
* <p>Constructor of Vector4.</p>
* If opt_src is specified, the new vector is initialized by opt_src.
* @constructs Vector4
* @param {Array<Number>} opt_src source vector (optional).
*/
var Vector4 = function (opt_src) {
var v = new Float32Array(4);
if (opt_src && typeof opt_src === "object") {
v[0] = opt_src[0];
v[1] = opt_src[1];
v[2] = opt_src[2];
v[3] = opt_src[3];
}
/**
* Vector container.
* @type {Float32Array}
*/
this.elements = v;
};