
ARCBALL:
A User Interface for Specifying

Three-Dimensional Orientation Using a Mouse
Ken Shoemake

Computer Graphics Laboratory
University of Pennsylvania

Philadelphia, PA 19104

Abstract

Arcball is an input technique for 3-D computer graphics,
using a mouse to adjust the spatial orientation of an object.
In Arcball, human factors and mathematical fundamentals
come together exceptionally well. Arcball provides con-
sistency between free and constrained rotations using any
direction as an axis; consistent visual input and feedback;
kinesthetic agreement between mouse motion and object
rotation; and consistent interpretation of mouse position.
Attention to mathematical detail facilitates the tasks of
users and implementors. Users say that as a general-purpose
rotation controller Arcball is easier to use than its nearest
rival, the Virtual Sphere. It is also more powerful, and
simpler to implement.

Résumé

Arcball est une interface utilisateur pour un système de
visualisation 3D utilisant la souris pour orienter les objets
dans l’espace. Dans Arcball, facteurs humains et concepts
mathématiques se marient exceptionnellement bien. Arcball
assure la consistence entre rotations libres et contraintes
quelle que soit la direction de leur axe. Consistence entre
l'entrée et la réponse; accord kinésique entre mouvements de
la souris et rotations de l’objet; interprétation consistente
des positions de la souris. Les utilisateurs affirment que le
contrôleur universel de rotation Arcball est plus simple à
utiliser que son concurent direct: «the Virtual Sphere». Il est
aussi plus puissant et plus simple à implémenter.

Key Words: object movement, view movement, mouse,
user interface, interactive graphics, 3D graphics, rotation,
orientation, human factors, quaternion

Introduction

In computer simulated scenes, most objects are manipulated
as if they were rigid, even when they are rubber balls or
robot arms. (Arms are divided into linked rigid pieces.)
When one point of a rigid body is fixed by a translation, the
remaining variability in position is called the body’s
orientation. Arcball is an input technique which allows
users to adjust orientation using a mouse. The design is
unusual in that it considers mathematical fundamentals as
well as human factors to address a difficult problem.

Although we find it easy to pick up a small object in one
hand, and turn it this way and that to examine it, it has
proved much harder to devise a mouse interface which feels
nearly as natural. One problem is that changes in orien-
tation can be made in three independent directions—for
example, a rotation about a left-right x axis, about an up-
down y axis, or about an in-out z axis. In contrast, a mouse
can move in only two independent directions.

A deeper problem is the curved geometry of orientation
space, which is quite different from the flat space of mouse
movements. For example, a 360° rotation leaves the
orientation unchanged, while a 180° z rotation gives the
same orientation as a 180° x rotation followed by a 180° y
rotation. The first case would be like pushing the mouse
straight forward and finding it back where it started, while
the second would be like raising the mouse in the air by
pushing it forward and to the side.

Moreover, closed loops of mouse motion may not produce
the closed loops of rotation one expects. Rotate an object
by +90° x, +90° y, –90° x, and then –90° y, and it is not
back as it started, but off by 120°. This “hysteresis” effect is
not inevitable, and would not be tolerated in a translation
controller. The point is not that such behavior precludes
undoing a complete drag sequence, but that it is unforgiving
during dragging. Yet only Arcball avoids hysteresis, by a
more careful mapping of mouse input to rotation.

Alternative mouse input techniques were recently evaluated
in [Chen 88]. These include simulating sliders or treadmills;
selecting a coordinate axis (by menu or by mouse button)
then dragging; approximating a trackball; and so on. All
separate rotations into independent x, y, and z angles (at
least internally), yet psychological studies show that
mental models of rotation do not [Carlton 90]. The virtual
trackball of [Hultquist 90] computes an instantaneous
rotation axis directly, but still exhibits hysteresis.

To avoid hysteresis, we must begin with the mathematical
fundamentals. From those, we are immediately led to the
basic Arcball design. Then we will see how to augment free
rotation with a constraint mode. After pausing to admire an
elegant quaternion implementation, we end by evaluating
Arcball’s success as a general-purpose rotation controller.

θ/2

a

Arc

R

R

R ;R

1

2

1 2

F

i

g

u

r

e

1

.

A

r

c

i

n

t

e

r

p

r

e

t

a

t

i

o

n

F

i

g

u

r

e

2

.

A

r

c

c

o

m

b

i

n

a

t

i

o

n

Mathematical Fundamentals

Any orientation of a rigid body can be given by a single
rotation, a turn about some axis, starting from an agreed-
upon reference orientation. Furthermore, the combination
of any number of rotations can be given by a single rotation
[Euler 1752] [Goldstein 80].

The combination law takes different forms, depending on
the rotation parameters used. Behind the various formulae,
however, is simple spherical geometry. A rotation R about
axis a by amount θ can be represented on a sphere as any
directed arc of length 1/2θ in the plane perpendicular to a,
with positive angles giving a counter-clockwise direction
around a. (See Fig. 1.) When the end of the first arc is made
to coincide with the beginning of the second, two sides of a
spherical triangle are formed. The arc completing the tri-
angle, from the beginning of the first arc to the end of the
second, represents a single rotation which has the same
effect as performing R1 followed by R2. (See Fig. 2.) Since
rotations do not commute, when the order of combination is
reversed, a different arc results. Otherwise, this is like
vector addition.

Consider the example given earlier of 180° rotations about
x and y giving a 180° rotation around z; this is represented
by a 90° arc from the north pole to the equator, followed by
a 90° arc along the equator. The third leg of the triangle is
indeed a 90° arc, and represents a 180° z rotation. That this
is the correct result is easy to verify using a physical object.
Furthermore, half-length arcs were essential, as full-length
arcs would have predicted a result of no rotation.

The hysteresis example is more complicated, for we must
slide arcs around on their great circles in order to add them.
First we go from 45° north down to the equator, then 45°
east. We then slide the diagonal result arc back by its
length, so it ends where we began. We are half done. Now we
add a 45° arc to the north pole, giving a result arc also going
due north. We slide this down so it ends on the equator, then
add a final 45° arc going west. The outcome of all this is a
60° diagonal arc, representing a 120° rotation around the
axis (1,-1,-1). This is not at all a simple closed path, but it
is how the rotations truly combine.

From these two examples we can see how previous rotation
controllers go astray mathematically. Most do not use any
kind of spherical model, and those that do rotate “physical”
spheres through full-length arcs. Unlike translations, rota-
tions do not admit a choice of “C:D ratio” in this aspect of
their model; only half-length arcs are permitted.

The mathematical and physical spheres are similar in that,
while arc lengths differ, their planes or axes correspond.
While the length problem is surprising, and perhaps con-
fusing, it is also unavoidable. (How many kids have thought
adding fractions would be much simpler if we could just add
numerators and denominators separately?) For an excellent
discussion of the relevant mathematical and physical
theory, see Chapter 4 of [Biedenharn 81].

Arcball

Arcball takes its design—and its name—directly from the
mathematics. Consequently, rotations can be displayed, as
well as input, in a graphically meaningful way.

Suppose some object is selected on the screen. To change
its orientation, the user simply draws an arc on the screen
projection of a sphere. The arc is a great arc specified by its
initial and final points, which are given by the mouse down
and up positions. (See Fig. 3.) As the mouse is being
dragged, its current position is used to compute the arc. Thus
the object—or a faster-drawn stand-in—turns with the
mouse. The direction and amount of turn are those of the
half-length arc model described above.

A great arc—the shortest spherical path between two
points—lies in the plane containing the two points and the
center of the sphere. If the end points lie exactly opposite
each other (which for Arcball can only happen if they lie on
the sphere silhouette), the plane of the arc is not defined. In
this application, however, that doesn’t matter; opposite
points imply a 360° rotation, which leaves the orientation
unchanged. In effect, opposite points on the circle are “the
same point.”

Mouse down

Mouse up
Wrap

F

i

g

u

r

e

3

.

M

o

u

s

e

i

n

p

u

t

F

i

g

u

r

e

4

.

W

r

a

p

p

i

n

g

.

This permits a useful feature: If the mouse is dragged out of
the circle at some point the arc can be made to reenter at—
wrap around to—the opposite point. (See Fig. 4.) Although
the arc end jumps across the circle, the orientation being
controlled changes smoothly and naturally. There is thus no
limit on the amount of rotation.

We give the user graphical feedback as the mouse is dragged,
by drawing a “rubber-band” arc from the initial point to the
current point, and updating a picture of the scene to show
the rotation of the body or camera. The sphere and rubber-
band arcs can be displayed separately from the scene image,
but preferably are drawn transparently on top of it.

Constrained Rotation

Spatial manipulations can be complex, and often are easier
with some constraints [Bier 86]. With Arcball, fixed axis
constraints are a natural extension. Axes can be chosen
from sets of any size, based on the object, the environment,
the view, or other sources. Natural axes to allow include the
view coordinate axes, the selected object’s model space
coordinate axes, world space coordinate axes, normals and
edges of surfaces, and joint axes of articulated models (such
as robot arms).

Remember that every arc lies in a plane perpendicular to its
rotation axis. If the two mouse points on the sphere are
orthogonally projected onto a fixed plane through the
sphere center then radially projected back onto the sphere,
they will necessarily become points giving a rotation about
the fixed axis perpendicular to that plane. (Fig. 5 illustrates
a body z-axis constraint.)

A method must be provided to ask for constraint, and to
select the axis to use. Many choice mechanisms, such as
menus, are possible, but one is particularly attractive.
Superimpose on the sphere a great circle (the front half) for
each axis from a limited set. Thus for body coordinate axes,
three mutually perpendicular arcs would be drawn, tilted with
the object. When the mouse is clicked down to initiate a
rotation, the constraint axis selected—and the only one
shown—will be that of the nearest arc. So that the user
doesn’t have to guess, we dynamically highlight the nearest

arc as the mouse is moved around prior to clicking. Mouse,
menu, or keyboard combinations can be used to select
among axis sets (e.g., SHIFT-click for camera axes, CTRL-
click for body axes, unmodified click for no constraints).

body
z-axis

body
y-axis

body
x-axis

unconstrained
point

constrained
point

F

i

g

u

r

e

5

.

C

o

n

s

t

r

a

i

n

e

d

z

r

o

t

a

t

i

o

n

Implementation

All the code for Arcball is here. The sphere can be indicated
by drawing its silhouette circle. To transform cursor coor-
dinates on the screen into a point on the sphere, the center
of the circle is subtracted from the cursor coordinates giving
a radial vector, which is divided by the radius of the circle to
give two of the coordinates on the unit sphere. If the cursor
lies outside the circle, that is easily corrected now. The third
sphere coordinate is obtained as the quantity which makes
the sum of the squares 1. Specifically, let the cursor screen
coordinates be screen.x and screen.y , let the center of
the circle be at center.x and center.y , and let the radius
on the screen be radius . Then the coordinates on the
sphere are given by

pt.x ← (screen.x – center.x)/radius;

pt.y ← (screen.y – center.y)/radius;

r ← pt.x*pt.x + pt.y*pt.y;
IF r > 1.0

THEN s ← 1.0/Sqrt[r];

 pt.x ← s*pt.x;

 pt.y ← s*pt.y;

 pt.z ← 0.0;

ELSE pt.z ← Sqrt[1.0 - r];

When a constraint axis is being used, the sphere point is
projected onto the perpendicular plane, flipped to the front
hemisphere if necessary, and renormalized before being
used. If the point lies on the axis, an arbitrary point on the
plane must be chosen. Flipping exploits the wrap effect.

dot ← V3_Dot[pt, axis];

proj ← V3_Sub[pt, V3_Scale[axis, dot]];

norm ← V3_Mag[proj];
IF norm > 0

THEN s ← 1.0/norm;

 IF proj.z < 0 THEN s ← -s;

 pt ← V3_Scale[proj, s];
ELSE IF axis.z = 1.0

THEN pt ← [1.0, 0.0, 0.0];

ELSE pt ← V3_Unit[[-axis.y, axis.x, 0]];

Incidentally, to find the closest arc simply constrain with
each axis in turn, and pick the one that gives the nearest
point. The nearest constrained point will have the largest
dot product with the free point.

Having obtained the initial and final end points by this
means, the rotation in unit quaternion form [Shoemake 85]
is the product of the final point times the conjugate of the
initial point: q = p1p0

* . Essential quaternion facts are: (1) a
unit quaternion q = [v, w] = [x, y, z, w] consists of a scalar w
which is cos θ/2 (where θ is the rotation angle), and a vector

v which is sin θ/2 times a unit vector along the rotation
axis; and (2) the product of two quaternions gives the
combination of the rotations they represent, and is non-
commutative. The formula given amounts to setting the
quaternion vector to the cross product of the initial and final
points, and the quaternion scalar to their dot product. No
trigonometric functions are required, only simple
arithmetic.

[q.x, q.y, q.z] ← V3_Cross[p0, p1];

q.w ← V3_Dot[p0, p1];

The new orientation of the rigid body is given by the
product of the quaternion for the orientation when dragging
started with the quaternion we’ve just derived from the user’s
mouse input:

qnow ← QuatMul[q, qstart];

This product uses only 16 multiplies and 12 adds, and the
result can be converted to a matrix at about the same cost

[Shoemake 89]. If a graphics pipeline with 4×4 matrix
multiply is available, accumulation and conversion can be
done at essentially no cost [Shoemake 92].

From these quaternion formulae we can verify that spherical
triangles behave as described earlier. Arc lengths will be
half the rotation angle, since we rotate by twice the inverse
cosine of the dot product, which is cosine of the arc length.
Also, the axis of rotation is taken from the cross product,
which is perpendicular to the vectors from the center to the
end points. To go from p0 to p1, we use p1p0

* , and we
continue from p1 to p2 using p2p1

* . The combined effect is
given by the product p2p1

* p1p0
* , which for these unit

quaternions is equivalent to p2p1
–1 p1p0

–1 = p2p0
* ,

corresponding to the third leg of the triangle. We can also
see that opposite points are equivalent, since –q gives the
same rotation as q.

For many purposes, the unit quaternion is most convenient,
however a quaternion can easily be converted to other forms
[Shoemake 85]. Although modern systems use quaternions
already, an Arcball implementation can certainly be done
without them. The essential step will still be to compute the
dot product and cross product of the arc endpoints.

A few observations may help simplify the arc drawing code.
We can approximate an arc with N line segments if we know
an endpoint and a point 1/N of the arc length away, by
reflection. Reflect the first point across the second, then the
second across the third, and so on. If δ is the dot product of

pt and pt+∆, then pt+2∆ = 2δpt+∆ – pt. We find δ just once,
then ignore the z coordinates. Given the endpoints, p0 and

p1, and the arc length,Ω = cos–1 p0⋅p1, we can compute the

extra point as (p0 sin (N–1) Ω/N + p1 sin Ω/N)/sin Ω. An arc

for constraint axis a = [x, y, z] is split in two. If s = √1–z2

is non-zero, the endpoints will be [–xz/s, –yz/s, s] and
±[y/s, –x/s, 0]; otherwise the “arc” is the sphere silhouette.

Orientation graphing

To go the other way, from a unit quaternion to a pair of
points on the sphere, first pick an initial point—say a
point on the sphere edge—perpendicular to the quaternion
vector; then obtain a final point as the product of the
quaternion times the initial point. The following suffices.

s ← SqRt[q.x*q.x + q.y*q.y];
IF s = 0.0

THEN p0 ← [0.0, 1.0, 0.0]

ELSE p0 ← [–q.y/s, q.x/s, 0.0];

p1.x ← q.w*p0.x – q.z*p0.y;

p1.y ← q.w*p0.y + q.z*p0.x;

p1.z ← q.x*p0.y – q.y*p0.x;

Also, if desired, the initial rim point can be negated when
that would give a shorter arc:

IF q.w < 0

THEN p0 ← [–p0.x, –p0.y, 0.0];

Evaluation

At this point in the paper, it’s a good bet that the graphics
programmers and mathematicians are happy, but the readers
who go to SIGCHI conferences are wondering what became
of the user in this user interface. Their concern is legitimate,
for as [Gentner 90] observed, “good engineering practice
can lead to poor user interfaces.”

A good user interface is quickly learned and easily remem-
bered; gets the task done quickly and with few errors; and is
attractive to users [Foley 90]. These goals are more likely to
be met if the design uses simple and natural interactions in
“the user’s language,” requires little memorization, provides
feedback and shortcuts, and is consistent—both with itself
and other interfaces [Nielsen 90].

How well does Arcball meet these criteria? We can make a
preliminary assessment before looking at user tests. It is
manifestly simple to use. There are no multiple sliders,
knobs, or mouse buttons. Selecting constraints is as simple
as holding down a key and clicking on an arc.

Dragging on a sphere is fairly natural. The object turns the
same direction the mouse moves, for a natural kinesthetic
correspondence. We can repeat an orientation by repeating a
position, as holding physical objects leads us to expect. On
the other hand, half-length arcs are probably not in “the
user’s language,” so are a potential problem.

Users must remember to hold down a key to get constraints,
but they never have to remember which direction is object,
world, or view x, y or z. The interface itself quickly reminds
users of how it behaves. (As for remembering constraints, it
may be helpful to add a persistent constraint mode, toggled
with a menu item.)

Arcball is rich in feedback—more so than most controllers.
The object rotates for a sense of direct manipulation, and a
rubber-band arc shows the net effect of a drag. Constraint
mode is signaled both by muscle tension [Buxton 86], and a
visual display of arc choices. The arc to be selected is high-
lighted, for further constraint feedback. The orientation of
the object can be graphed as yet another feedback arc. It is,
of course, possible to augment Arcball with numeric output
(and input) when that is meaningful.

Arcball hardly needs shortcuts, but there are three. First, the
availability of constaints can be considered a shortcut for
times when they are desirable. (Constraints can also be used
as “training wheels.”) Second, wrap-around makes large
rotations easier; but notice that half-length arcs already let
the user rotate by 360° around any axis with a single drag.
Third, dragging outside the circle is an easy way imitate the
use of a screen normal constraint axis. Angle detents can be
added to make, say, 15° angle multiples easier.

Consistency is one of Arcball’s strongest features. Object
motion is consistent with mouse motion, as noted, and lack
of hysteresis is a very powerful kind of consistency. Also,
at any time within any drag, mouse movement between the
same points will always turn the object exactly the same

way. Arcs will be drawn for dragging, for constraints, and
for object orientation; all are interpreted within a consistent
context. Some interfaces have “trouble spots,” such as
gimbal lock, at certain angles; Arcball has none. Interfaces
like the Virtual Sphere that depend on incremental mouse
movements can behave badly if sampling is slow or
coordinates are noisy; Arcball will not. There is little
difference between use of the mouse in constraint mode and
free mode, so Arcball can be a general-purpose controller.

The Arcball consistency of constrained rotation with free
rotation means users need learn only one interface for many
purposes. Consider the manipulation of a manikin arm with
rotary joints [Badler 86]. The shoulder has a ball joint and
so can rotate freely, while the elbow can bend around only
one axis. With other interfaces, a different style of input
might be required for each joint. A thumbwheel is a common
choice for the elbow, but using three wheels for the shoulder
is awkward. Even for the elbow, the relationship of wheel
motion to spatial motion may change when the shoulder is
rotated, so a horizontal stroke of the wheel corresponds to a
diagonal bend of the elbow. Arcball eliminates all these
difficulties, and simplifies new possibilites. For example,
the foot can be forced to pivot on a sloping floor without
raising the heel or toe, simply by constraining its rotation
to be around the normal to the floor.

User interfaces cannot be evaluated adequately on paper, yet
empirical measures of advantage are often hard to obtain.
Even the study in [Chen 88] failed to find significant
performance differences between two very different
controllers, and only concluded the superiority of the
Virtual Sphere over the method of [Evans 91] based on user
comments. Yet informal evaluation should not be quickly
dismissed, as studies have shown it can be informative
[Nielsen 90].

Informal tests of Arcball suggest that its visual feedback
provides important cues for understanding its behavior, that
it is valuable to have both free and constrained modes, and
that eliminating hysteresis is helpful. Arcball rotates ob-
jects twice as far as might be expected, yet few users realized
that; when they did, it was not a problem. A number of users
were slow learning how to rotate around the screen normal.
This confusion was possible because they were given no
initial hint about how Arcball worked, in order to learn as
much as possible about their expectations and responses.
Nevertheless, without exception, they quickly learned to
use, and like, Arcball. Many described it as “a sort of
trackball.” Trackballs usually have only two degrees of
freedom, which may explain the difficulty mentioned.

Further comment on visual feedback is in order. Unlike
other controllers, Arcball can draw a meaningful rubber band
arc while dragging, but it was not clear whether it was worth
cluttering the picture. In fact, users appreciated the arc, and
noted that it was a strong cue to the spherical nature of the
controller. The circular silhouette of the controller sphere
might also be eliminated; however without it, Arcball is
much more difficult to use. Finally, a constraint axis can be

chosen as the nearest arc from some set; not surprisingly, it
is better to draw the arc choices, and to highlight the closest
one before the mouse is clicked to begin dragging.

When specifically compared to Chen’s Macintosh demo of
the Virtual Sphere, Arcball was the clear favorite.†

Hysteresis may be hard to describe in writing, but users
easily noticed the different feel when they tried the
controllers together, and preferred the feel of Arcball. The
Virtual Sphere had a bothersome modal distinction between
drags that started inside the circle and those that started
outside; Arcball did not. Use of the shift key (consistent
with some other Macintosh interfaces) invoked a limited
constraint mode for the Virtual Sphere, but there was no
visual feedback, and users found its behavior hard to
understand. Some users were slow to notice the Arcball arc
highlighting (a more distinct color should probably be
used), but since only the selected arc remained visible when
dragging began, they could see their mistakes. In this area,
too, Arcball was preferred. As mentioned earlier, half-length
arcs were unexpected, but not annoying. Their benefits of
wrap-around, greater range of motion, arc feedback, and
hysteresis elimination seemed more important than their
lack of “physicality.”

Conclusions

Arcball is an elegant application of mathematical theory to
interface design. Its behavior and its implementation are
clean and simple. We can perform both free rotation and
constrained rotation. In either case, the direction of mouse
motion corresponds to the direction of object rotation. Lack
of hysteresis makes Arcball more forgiving than other
rotation controllers, since incremental motions are easily
undone. Use of half-length arcs brings this and other
benefits, without seeming unnatural. More user studies are
needed, but mathematically, at least, Arcball is likely to be
the best general-purpose rotation controller using a mouse.

That said, there is a bigger picture. Arcball only controls
rotation, and typical 3-D interactions certainly require
translation [Houde 92] and possibly scaling as well—and
along arbitrary axes [Shoemake 92]. Studies indicate
important differences between manipulating objects and
manipulating views [Ware 90]. For the latter, egocentric
controllers [Mackinlay 90] may be more satisfactory. Users
may feel that consistency of controllers should encompass
all three transformations, or may decide that specific tasks
warrant custom rotation controllers. Ultimately, users will
choose the interfaces that serve them best.

Since a single mouse position has only two degrees of
freedom, a pair of positions—the ends of an arc—are used.
This part of Arcball has wider applicability, including a
translation controller to be described in a future paper.

† Readers who would like to make the comparison for themselves can get a copy of the
Arcball demo for the Macintosh by anonymous ftp to ftp.cis.upenn.edu, directory
/pub/graphics.

Acknowledgments

Xerox PARC proved a fertile ground for the blooming of
these ideas. Jules Bloomenthal helped me integrate Arcball
into existing software. Jock Mackinlay, George Robertson,
and Eric Bier gave me enthusiastic support, often at some
sacrifice, for which I am very grateful. Thanks to all the
hardy folk who took the time to try Arcball and give me
their comments. Pierre Crégut translated the abstract.

References
[Badler 86] Badler, Norman I., Manoochehri, Kamran H., and

Baraff, David. “Multi-Dimensional Input Techniques and
Articulated Figure Positioning by Multiple Constraints,” in Pizer,
Stephen M., ed., Proceedings 1986 Workshop on Interactive 3D
Graphics, ACM, 1986, 151–169.

[Biedenharn 81] Biedenharn, L.C., and Louck, J.D. Angular
Momentum in Quantum Physics: Theory and Application. As
Encyclopedia of Mathematics and Its Applications, Gian-Carlo
Rota (ed.), Vol. 8. Addison-Wesley, 1981.

[Bier 86] Bier, Eric A. “Skitters and Jacks: Interactive 3-D
Positioning Tools,” Proceedings 1986 Workshop on Interactive
3-D Graphics (Chapel Hill, North Carolina, October 1986), 183–
196.

[Buxton 86] Buxton, William. “There’s More to Interaction Than
Meets the Eye: Issues in Manual Input,” in Norman, D., and
Draper, S., eds. User-Centered System Design, Lawrence
Erlbaum, 1986, 319–337.

[Chen 88] Chen, Michael, Mountford, S. Joy, and Sellen, Abigail. “A
Study in Interactive 3-D Rotation Using 2-D Control Devices,”
Computer Graphics, 22 (4), August 1988 (SIGGRAPH ’88
Proceedings), 121–129.

[Euler 1752] Euler, Leonhard. “Decouverte d’un nouveau principe
de méchanique,” (1752), Opera omnia, Ser. secunda, v. 5, Orel
Füsli Turici, Lausannae, 1957, 81–108.

[Evans 81] Evans, Kenneth B., Tanner, Peter P., and Wein, Marceli.
“Tablet Based Valuators that Provide One, Two, or Three
Degrees of Freedom,” Computer Graphics, 15 (3), August 1981.
(SIGGRAPH ’81 Proceedings), 91–97.

[Goldstein 80] Goldstein, Herbert. Classical Mechanics, second
edition, Addison-Wesley, 1980.

[Houde 92] Houde, Staphanie. “Iterative Design of an Interface for
Easy 3-D Direct Manipulation,” CHI ’92 Conference Proceed-
ings (Montery, California, May 3–8, 1992), ACM 1992.

[Hultquist 90] Hultquist, Jeff. “A Virtual Trackball,” Graphics Gems,
Academic Press, 1990, 462–463.

[Mackinlay 90] Mackinlay, Jock D., Card, Stuart K., and Robertson,
George G. “Rapid Controlled Movement Through a Virtual 3D
Workspace,” Computer Graphics, 24 (4), August 1990.
(SIGGRAPH ’90 Proceedings), 171–176.

[Nielsen 90] Nielsen, Jakob, and Molich, Rolf. “Heuristic Evaluation
of User Interfaces,” CHI ’90 Conference Proceedings (Seattle,
Washington, April 1–5, 1990), ACM 1992.

[Shoemake 85] Shoemake, Ken. “Animating Rotation with
Quaternion Curves,” Computer Graphics, 19 (3), July 1985.
(SIGGRAPH ’85 Proceedings), 245–254.

[Shoemake 89] Shoemake, Ken. “Quaternion Calculus For
Animation,” Notes for Course #23, Math for SIGGRAPH,
SIGGRAPH ’89.

[Shoemake 91] Shoemake, Ken. “Quaternions and 4¥4 Matrices,”
Graphics Gems II, Academic Press, 1991, 351–354.

[Shoemake 92] Shoemake, Ken. “Matrix Animation and Polar
Decomposition,” Graphics Interface ’92 Proceedings
(Vancouver, British Columbia, May 11–15, 1992).

[Ware 90] Ware, Colin and Osborne, Steve. “Exploration and Virtual
Camera Control in Virtual Three Dimensional Environments,”
Computer Graphics 24 (2), March 1990, 175–183.

