
Arcball Interface

Flavia R. Cavalcanti

Definition

! Goal: implementation of an algorithm for
rotating an object, by using the Arcball
paradigm

! Input: mouse movement
! Output: a matrix to rotate, in a natural

way, a 3D object

peeepepeepepepev ×=×⋅−×=⋅−××= =
⊥

ˆˆˆ)ˆ(ˆ)ˆ)ˆ((ˆˆ

 p’ described in orthogonal base

epep ˆ)ˆ(
||

⋅=

pev
⊥

×= ˆ

ppp
||

+=
⊥

)()(||pRpRp +ʹ
⊥

=

vppp)(sin)(cos|| θθ += +ʹ
⊥

epepp ˆ)ˆ(⋅−=
⊥

)ˆ)((sin)ˆ)ˆ()((cosˆ)ˆ(peepepepep ×+⋅−+⋅=ʹ θθ

)ˆ)((sinˆ)ˆ)(cos1()(cos peepepp ×+⋅−+=ʹ θθθ

Writing Rotation About
1ˆ,ˆ ,, =

⊥
evpe

ê

! Rotation about an axis.

! OpenGL - glRotatef(θ, ex, ey, ez)

! Rotation matrix, after changing coordinate system
from to x,y,z:
!
! Columns of M are given by: p’(1,0,0), p’(0,1,0), p’(0,0,1)

Rotation Matrix

x

y

z

θ ê
ê – axis of rotation
θ – rotation angle

vpe ,,ˆ
⊥

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−+−−−−

−−−++−

+−−−−+

=

1000
0)cos1(cossin)cos1(sin)cos1(
0sin)cos1()cos1(cossin)cos1(
0sin)cos1(sin)cos1()cos1(cos

2

2

2

zxzyyzx

xyzyzyx

yxzzxyx

eeeeeee
eeeeeee
eeeeeee

θθθθθθ

θθθθθθ

θθθθθθ

M

)ˆ)((sinˆ)ˆ)(cos1()(cos)(peepeppp ×+⋅−+=ʹ θθθ

Euler Angles in Animation
! Gimbal Lock

! Is the loss of one degree of freedom in a 3D, 3-gimbal mechanism,
which occurs when the axes of two gimbals are driven into a
parallel configuration
! "locking" the system into rotation in a degenerate two-dimensional

space.
! https://www.youtube.com/watch?v=zc8b2Jo7mno

https://www.youtube.com/watch?v=zc8b2Jo7mno

Gimbal lock on Apollo 13
! “13, Houston. We see you getting close to gimbal lock there.

We'd like you to bring up all quad Cs on MAIN A, quad C-1,
C-2, C-3, C-4 on MAIN A, and also bring B-3 and B-4 up on
MAIN A.”

! Apollo used an Inertial Mechanism Unit for navigation, same
as airliners do today.
! Three gyroscopes. One points up and down, one right and left,

the other fore and back. Accelerometers attached to these
record accelerations in each direction.

! Given a starting point, such a system can record where you are
in relation to that point at any time. Each of these gyroscopes
will have a "null point“, where the gyro lines up perfectly with
its gimbals. If all three enter this state at once, the platform
instantly loses it knowledge of where it is. It goes into "gimbal
lock".

! http://www.universetoday.com/119984/13-more-things-that-
saved-apollo-13-part-9-avoiding-gimbal-lock/

http://www.universetoday.com/119984/13-more-things-that-saved-apollo-13-part-9-avoiding-gimbal-lock/

Euler Angles Between Two Reference Frames xyz to
XYZ

! α represents a rotation around z.
! N (line of nodes) is the orientation of X

after the first elemental rotation (x’).
! Β represents a rotation around x’.

! The third rotation occurs about Z.
Hence, Z = z″.

! γ represents a rotation around z″.

! z-x’-z″ (intrinsic rotations)
! α and γ in [−π, π] and
! β in [−π/2, π/2].
! Β = 0 and plane XY coincides with plane

xy -> gimbal lock.

Gimbal Lock in CG
! In fact, this is just an analogy (a good one?), and the problem

only occurs if Euler angles are used.
! Some systems (Blender, Maya) use just three numbers, Rx, Ry, Rz, instead

of a 4 dimensional array (quaternion) to store an orientation.
! A general rotation R is then calculated, by multiplying these three

matrices (or, some say, applying three “rolls”):

! The animator uses the parameterization above to set up an
arbitrary orientation.
! An x-roll, then a y-roll and finally a z-roll
! https://sundaram.wordpress.com/2013/03/08/mathematical-reason-behind-gimbal-lock-

in-euler-angles/

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛ −

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−
=

1000
0100
00cossin
00sincos

1000
0cos0sin
0010
0sin0cos

1000
0cossin0
0sincos0
0001

),,(33

33

22

22

11

11
321

θθ

θθ

θθ

θθ

θθ

θθ
θθθR

https://sundaram.wordpress.com/2013/03/08/mathematical-reason-behind-gimbal-lock-in-euler-angles/

Euler Angles and Gimbal Lock
! If the y-roll happens to be 90o, then the “lock” occurs:

! The animator has stumbled upon a singularity in the
parameterization space (is gone).
! are associated with the same degree of freedom.
! http://en.wikipedia.org/wiki/Euler_angles

iiii cs
cccssscsscsc
csccssssccss
ssccc

R θθθθθ cos,sin,

1000
0
0
0

),,(
213132131321

213132131321

23232

321 ==

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−+

+−

−

=

0,1,

1000
00)sin()cos(
00)cos()sin(
0100

),
2
,(22

3131

3131
31 ==

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−−−

−−

−

= csR
θθθθ

θθθθ
θ

π
θ

31 θθ and
2θ

http://en.wikipedia.org/wiki/Euler_angles

How to Avoid
! Lock occurs because Euler angles are being changed,

in a fixed order, one at a time, so axes can line up.
! If all three angles are changed simultaneously, the

lock does not occur
! But interpolation from one key orientation to another is

not unique
! Another possibility is using a “fourth gimbal”, not

allowed to align, which take us to a…
! Better paradigm: quaternions.

Sir William Rowan Hamilton
! Hamilton, in 1830, tried to generalize complex numbers to R3

(a complex volume, with two imaginary axes)

! a + ib, i2 = -1
! He realized in 1843 that it was impossible on R3 (triples of

numbers are not closed under multiplication), but not on R4

or R8

! q = a + bi + cj + dk = (a,v), i2 = j2 = k2 = ijk =-1
! ij = k, jk = i, ki = j, kj = -i = ji = -k, ik = -j

! The multiplication of two quaternions is a quaternion
! Closed under multiplication => mathematical group.

! Quaternion multiplication is not commutative! q1.q2 ≠ q2.q1

Broome Bridge in Dublin
! Greatest Irish mathematician ever (?)

! https://www.youtube.com/watch?
v=mHVwd8gYLnI&nohtml5=False

https://www.youtube.com/watch?v=mHVwd8gYLnI&nohtml5=False

Quaternions
! Complex Numbers on R4

! q = a + bi + cj + dk
! q = (s, v),

! s – real component and
! v – vector representing the imaginary component

! Simplifies the calculation of rotations about an axis

! Rotations using product of quaternions
! Rotation of a point p about an axis v

! R(p) = q p q -1

p = (0, r) - point represented as a pure quaternion
q = (s, v) - rotation (angle and axis) represented as a quaternion

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛= ê
2

sin,
2

cos
θθq ê – unit vector (rotation axis)

θ – rotation angle

Properties of Quaternions
! Multiplication and Addition

! Conjugate and reciprocal:

! Norm:
! Rotation: take a pure quaternion p = (0, r) and a unit

quaternion q=(s,v), where , and define:
! R(p) = q p q -1

2222222),)(,(qzyxsvsvsvsqq =+++=+=−=

),(),,(222111 vsqvsq ==

()vvvsvsvvssqq ×++⋅−= 211221212121 ,

),(vsq −=

1=qq

),(212121 vvssqq ++=+

22 vsqqqqq +===

2
1

q
qq =−

Orientations as Quaternions

! This is exactly the same equation in transparency 4
! aside from a factor of 2, and p written as r

! Therefore, orientations can be parameterized as:

1,
2

sin,
2

cos =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛= êêθθq

=×+⋅+−=−=))ˆ(sincos2ˆ)ˆ(2sin2)2sin2(cos,0(1)(reererqqppRq θθθθθ

() ()() () ()),0(,1),sin,(cos,sin,cos 1 rpqq ==−== − êêê θθθθ

))ˆ(2sinˆ)ˆ)(2cos1()2(cos,0(reerer ×+⋅−+= θθθ

Moving In and Out Quaternion Space
! Unit quaternions are closed under multiplication

! Multiplication of two unit quaternions is a unit quaternion
! Pile up rotations really nice, with no gimbal locks!

! Go from a general rotation matrix to quaternion and vice
versa.

! Taking a unit quaternion and

 performing q()q -1 is the same as applying a rotation matrix:
! double quat[4]
! double mat[4][4]

! mat2quat (double* mat, double* q)
! quat2mat (double* q, double* mat)

! Code can be found in reference [2]

1,
2

sin,
2

cos =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛= êêθθq

ArcBall
! Definition: interface for rotating a 3D object, by

using just a mouse

Arc Interpretation
 a – rotation axis
 θ – rotation angle

Arc Combination

Sphere As a Virtual Trackball
1. Consider screen coordinates from (0,0) to (w,h).
2. Mouse coordinates (x,y) are used to sample a function,

z(x,y):

3. Points inside the circle are mapped onto a sphere, while
points outside are mapped onto plane z=0.

Hemisphere Inscribed in Screen Area

! Circle centered at the origin:

! Circle centered at (w/2, h/2):

2222222 yxRzRzyx −−=⇒=++

Code [1]
 radius = MIN(w/2,h/2)
 x = (x1 - w/2)/radius;

y = (h/2 - y1)/radius;
 r = x*x + y*y;
 if (r > 1.0) {

s = 1.0/sqrt(r);
x *= s;
y *= s;
z = 0.0;

} else
z = sqrt(1.0 – r);

Angle-axis Transformation
! Mouse dragged from to

! Rotation angle:

! Rotation axis:

 y))z(x,y,(x, p
1
=))y,x(z,y,x(p

2
ʹʹʹʹʹ=

Rotations as Two Reflections
! Practical implementations use two reflections

instead of a rotation
! Product of two reflections in intersecting planes is

equivalent to a rotation.
! The axis of this rotation is the line of intersection of the

planes, while the angle of rotation is twice the angle
between the two planes.

Example
! Put two mirrors at 90° to each other

and put an object in front of them.
! The reflection on the second mirror

will appear to have been rotated by
180° relative to the original object.

! The rotation angle 180° is twice the
angle between mirrors, which is 90°
in this example.

! https://sureshemre.wordpress.com/
2014/07/19/a-rotation-equals-two-
reflections/

https://sureshemre.wordpress.com/2014/07/19/a-rotation-equals-two-reflections/
https://sureshemre.wordpress.com/2014/07/19/a-rotation-equals-two-reflections/
https://sureshemre.wordpress.com/2014/07/19/a-rotation-equals-two-reflections/
https://sureshemre.wordpress.com/2014/07/19/a-rotation-equals-two-reflections/
https://sureshemre.wordpress.com/2014/07/19/a-rotation-equals-two-reflections/
https://sureshemre.wordpress.com/2014/07/19/a-rotation-equals-two-reflections/
https://sureshemre.wordpress.com/2014/07/19/a-rotation-equals-two-reflections/
https://sureshemre.wordpress.com/2014/07/19/a-rotation-equals-two-reflections/

simple-rotator.js
! setView = function(viewDirVec, viewUpVec,

viewDistance)
! Create view matrix using (ux, uy, uz) as column vectors

! viewDirectionVector --> uz
! viewUpVector x uz --> ux
! uz x ux --> uy

! getViewMatrix = function()
! Return a rotated view matrix (after dragging the mouse)

! function toRay(x,y)
! Create a ray from the center of the screen to the point

on the sphere, which projects onto (x,y)
! Sphere origin is the center of screen, and radius is the

minimum (width, height)

simple-rotator.js
! function doMouseDrag(evt)

! Create two rays: ray1,ray2

! map them to world coordinates, by using the view matrix
inverse (transpose)

! applyTransvection(ray1,ray2);

! function applyTransvection(e1, e2)
! Rotate view matrix (ux, uy, uz) around (e1 x e2), by

applying two reflections on each vector.

! http://math.hws.edu/eck/cs424/notes2013/webgl/
skybox-and-reflection/simple-rotator.js

http://math.hws.edu/eck/cs424/notes2013/webgl/skybox-and-reflection/simple-rotator.js
http://math.hws.edu/eck/cs424/notes2013/webgl/skybox-and-reflection/simple-rotator.js
http://math.hws.edu/eck/cs424/notes2013/webgl/skybox-and-reflection/simple-rotator.js
http://math.hws.edu/eck/cs424/notes2013/webgl/skybox-and-reflection/simple-rotator.js
http://math.hws.edu/eck/cs424/notes2013/webgl/skybox-and-reflection/simple-rotator.js
http://math.hws.edu/eck/cs424/notes2013/webgl/skybox-and-reflection/simple-rotator.js
http://math.hws.edu/eck/cs424/notes2013/webgl/skybox-and-reflection/simple-rotator.js
http://math.hws.edu/eck/cs424/notes2013/webgl/skybox-and-reflection/simple-rotator.js

Conclusions
! Euler angles make objects move unexpectedly (skew

strangely) between key frames
! Gimbal lock can occur in any order of rotation
! Best order for camera in Maya is:

! y (yaw) -> x (pitch) -> z (roll)
! (only locks looking straight up or down)

! Quaternions are the appropriate paradigm for
rotation interpolation, and they avoid gimbal lock

! One can add, multiply and divide two quaternions,
but multiplication does not commute (p.q ≠ q.p).

! Multiplication of unit quaternions correspond to
matrix multiplication (rotation composition)

http://www.autodesk.com/products/maya/overview

Conclusions
! Arcball does not require quaternions to be

implemented
! Very intuitive and only requires a mouse

! Replaces all those sliders, for changing angles, for a
click and pull.

! Qt timer class provides a tick event that can be used
to re-apply a quaternion, on and on, to produce an
animation.
! Or requestAnimationFrame(render) in html5/javascript.

http://doc.qt.io/qt-5/qtimer.html

I Am Done for Today

! Thank you all!!

References
! [1] ARCBALL: A User Interface for Specifying Three-Dimensional Orientation

Using a Mouse - Ken Shoemake
! [2] Advanced Animation and Rendering Techniques – Alan Watt

! [3] https://braintrekking.wordpress.com/2012/08/21/tutorial-of-arcball-
without-quaternions/

