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What can we do with it? 

■ Goal: Implement an algorithm to rotate an object, using 
the Arcball paradigm 

■ Input: Mouse movement 

■ Output: a rotation matrix for a 3D object



+
Demo 

■ Let’s first see what arc ball can do before digging into the 
theory… 

■ Go demo go!

http://www.flavulous.com/


+
Why is it useful?



+
Convoluted Controls

Those are 6 keys for movement!



+
Those Controls Get Worse…

Every pilot ought to know… 

That you have 5 action keys.  

That you have 6 movement 
keys.  

And as such... 
You have to deal with 11 keys 

simultaneously per game!
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Rotating Around Vector ê [2] 
P’ is described as an orthogonal 
base 
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Rotation Matrix

■ Rotation about an axis. 

■ OpenGL - glRotatef(θ, ex, ey, ez) 

■ Rotation matrix, after changing coordinate system from          
to x,y,z: 

■ Columns of M are given by: p’(1,0,0), p’(0,1,0), p’(0,0,1)

ê – axis of rotation 
θ – rotation angle
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Gimbal Lock [3]

■ Loss of one degree of freedom in a 3D, 3-gimbal 
mechanism 

■ Occurs when the axes of 2 gimbals are driven into a 
parallel configuration -> locking the system into place

Gyroscope with 3 
gimbals

Gimbal with roll, pitch, and 
yaw axis
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Gimbal Lock Sucks When You’re 
in Space [5]

■ Problems with Apollo 13 

■ Apollo used an Inertial Mechanism Unit for navigation, 
same as airliners do today.  

■ Given a starting point, such a system can record 
where you are in relation to that point at any time. 
Each gyroscopes will have a "null point“, where the 
gyro lines up perfectly with its gimbals. If all three 
enter this state at once, the platform instantly loses it 
knowledge of where it is. It goes into "gimbal lock". 
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Gimbal Lock In CG [4]

■ Bad Analogy – problem only occurs with Euler angles 

■ Blender and Maya use three numbers, Rx, Ry, Rz, instead of a 4 
dimensional array (quaternion) to store a rotation. 

■ A general rotation R is then calculated, by multiplying these 
three matrices (or, some say, applying three “rolls”):
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+
Euler Angles and Gimbal Lock 
[10]

■ If the y-roll happens to be 90o, then the “lock” occurs: 

■ Loss of freedom in the y - axis
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+
How to avoid Gimbal Lock?

■ Lock occurs because Euler angles are being changed, in 
a fixed order, one at a time, so axes can line up. 

■ Another possibility is using a “fourth gimbal”, not 
allowed to align, which take us to a… 

■ Better solution-> quaternions.
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Sir Rowan William Hamilton

■ Hamilton, in 1830, tried to generalize complex numbers 
to R3 (a complex volume, with two imaginary axes) 

■ a + ib, i2 = -1 

■ He realized in 1843 that it was impossible on R3 (triples of 
numbers are not closed under multiplication), but not on 
R4 or R8 

■ q = a + bi + cj + dk = (a,v), i2 = j2 = k2 = ijk =-1 

■ ij = k, jk = i, ki = j, kj = -i = ji = -k, ik = -j 

■ The multiplication of two quaternions is a quaternion 

■ Closed under multiplication => mathematical group. 

■ Quaternion multiplication is not commutative! q1.q2 ≠ q2.q1



+
Broome Bridge in Dublin [6]
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Quaternions [2]

■ Complex Numbers on R4 

■ q = a + bi + cj + dk 

■ q = (s, v),  

■ s – real component and  

■ v – vector representing the imaginary component 

■ Simplifies the calculation of rotations about an axis 

■ Rotations using product of quaternions 

■ Rotation of a point p about an axis v 

■ R(p) = q p q -1 

■ p = (0, r ) - point represented as a pure quaternion 

■ q = (s, v ) - rotation (angle and axis) represented as a quaternion
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Properties of Quaternions [2]

■ Multiplication and Addition 

■ Conjugate and reciprocal:  

■ Norm: 

■ Rotation: take a pure quaternion p = (0, r) and a unit quaternion q=(s,v), 
where             , and define: 

■  R(p) = q p q -1
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+
Orientations as Quaternions [2]

■ This is exactly the same equation in transparency 
4 

■ aside from a factor of 2, and p written as r 

■ Therefore, orientations can be parameterized as:
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+
ArcBall Technique

■ Interface to rotate a 3D object using just a mouse

Arc 
Interpretation 

a – rotation axis 
θ – rotation angle

Arc Combination
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Sphere As a Virtual Trackball [7]

1. Consider screen coordinates from (0,0) to (w,h). 

2. Mouse coordinates (x,y) are used to sample a function, 
z(x,y): 

3. Points inside the circle are mapped onto a sphere, while 
points outside are mapped onto plane  z=0.
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Hemisphere Inscribed in Screen 
Area [7]

■ Circle centered at the origin: 

■ Circle centered at (w/2, h/2):
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Angle-axis Transformation [7]

■ Mouse dragged from                             to 

■ Rotation angle: 

■ Rotation axis:
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Rotation as Two Reflections [8]

■ Practical implementations use two reflections instead of 
a rotation  

■ Product of two reflections in intersecting planes is equivalent 
to a rotation.  

■ The axis of this rotation is the line of intersection of the 
planes, while the angle of rotation is twice the angle between 
the two planes.
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Example [8]

■ Put two mirrors at 90° to each other and put an object in 
front of them.  

■ The reflection on the second mirror will appear to have 
been rotated by 180° relative to the original object.  

■ The rotation angle 180° is twice the angle between 
mirrors, which is  90° in this example.



+
Simple-Rotator.js [10]

■ setView = function( viewDirVec, viewUpVec, 
viewDistance ) 

■ Create view matrix using (ux, uy, uz) as column vectors 

■ viewDirectionVector --> uz 

■ viewUpVector x uz --> ux 

■ uz x ux --> uy 

■ getViewMatrix = function() 

■ Return a rotated view matrix (after dragging the mouse) 

■ function toRay(x,y) 

■ Create a ray from the center of the screen to the point on the 
sphere, which projects onto (x,y) 

■ Sphere origin is the center of screen, and radius is the minimum 
(width, height)
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Simple-Rotator.js [10]

■ function doMouseDrag(evt) 

■ Create two rays: ray1,ray2 

■ map them to world coordinates, by using the view matrix 
inverse (transpose) 

■ applyTransvection(ray1,ray2); 

■ function applyTransvection(e1, e2) 

■ Rotate view matrix (ux, uy, uz) around (e1 x e2), by applying 

two reflections on each vector.



+
That’s All Folks

■ Questions?
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